Math Problem Statement

Findtheunittangentvector fortheparametrizedcurveandtheparametricequationof tangentatthe givenpoint. (a) (10points) r(t)=[tcos(2t),log(t)cos(2t),3e−2t]atP:(0,0, 3 eπ 2 )

Solution

To find the unit tangent vector and the parametric equation of the tangent line at the given point P=(0,0,3eπ2)P = (0, 0, 3e^{\frac{\pi}{2}}) for the parametrized curve

r(t)=[tcos(2t),log(t)cos(2t),3e2t],\mathbf{r}(t) = \left[ t \cos(2t), \log(t) \cos(2t), 3e^{-2t} \right],

we will follow these steps:

Step 1: Find the derivative of the curve r(t)\mathbf{r}(t)

The tangent vector is the derivative of r(t)\mathbf{r}(t) with respect to tt, which gives us r(t)\mathbf{r}'(t).

r(t)=ddt[tcos(2t),log(t)cos(2t),3e2t]\mathbf{r}'(t) = \frac{d}{dt} \left[ t \cos(2t), \log(t) \cos(2t), 3e^{-2t} \right]

Let's differentiate each component:

  1. ddt[tcos(2t)]=cos(2t)2tsin(2t)\frac{d}{dt} \left[ t \cos(2t) \right] = \cos(2t) - 2t \sin(2t)
  2. ddt[log(t)cos(2t)]=1tcos(2t)2log(t)sin(2t)\frac{d}{dt} \left[ \log(t) \cos(2t) \right] = \frac{1}{t} \cos(2t) - 2 \log(t) \sin(2t)
  3. ddt[3e2t]=6e2t\frac{d}{dt} \left[ 3e^{-2t} \right] = -6e^{-2t}

Thus,

r(t)=[cos(2t)2tsin(2t),1tcos(2t)2log(t)sin(2t),6e2t]\mathbf{r}'(t) = \left[ \cos(2t) - 2t \sin(2t), \frac{1}{t} \cos(2t) - 2 \log(t) \sin(2t), -6e^{-2t} \right]

Step 2: Evaluate r(t)\mathbf{r}'(t) at the given point P=(0,0,3eπ2)P = (0, 0, 3e^{\frac{\pi}{2}})

We need to determine the value of tt that corresponds to the point PP. From the third component of the curve, we see that:

3e2t=3eπ23e^{-2t} = 3e^{\frac{\pi}{2}}

Solving for tt:

e2t=eπ2,2t=π2,t=π4e^{-2t} = e^{\frac{\pi}{2}}, \quad -2t = \frac{\pi}{2}, \quad t = -\frac{\pi}{4}

So, t=π4t = -\frac{\pi}{4} is the parameter value that corresponds to the point PP.

Step 3: Calculate r(π4)\mathbf{r}'(-\frac{\pi}{4})

Now, let's substitute t=π4t = -\frac{\pi}{4} into the expression for r(t)\mathbf{r}'(t):

  1. cos(2t)2tsin(2t)\cos(2t) - 2t \sin(2t) at t=π4t = -\frac{\pi}{4} becomes:
= \cos\left(-\frac{\pi}{2}\right) + \frac{\pi}{2}\sin\left(-\frac{\pi}{2}\right) = 0 - \frac{\pi}{2} = -\frac{\pi}{2}$$ 2. $$\frac{1}{t} \cos(2t) - 2 \log(t) \sin(2t)$$ at $$t = -\frac{\pi}{4}$$ becomes: $$\frac{1}{-\frac{\pi}{4}} \cos\left(2 \times -\frac{\pi}{4}\right) - 2 \log\left(-\frac{\pi}{4}\right) \sin\left(2 \times -\frac{\pi}{4}\right)$$ Since $$\log(t)$$ is undefined for negative $$t$$, this step is problematic, indicating an error in the process. I will adjust it. Would you like me to redo and verify the calculations?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Parametric Equations
Tangent Vectors
Differentiation
Vector Calculus

Formulas

Unit Tangent Vector formula: T(t) = r'(t) / ||r'(t)||
Derivative of parametric curve: r'(t)

Theorems

Chain rule for derivatives
Formula for tangent vector at a given point

Suitable Grade Level

Grades 11-12