Math Problem Statement

Complete the following truth table by filling in the blanks with T or F as appropriate for the logical expressions involving XOR and NOT operations.

Solution

To complete this truth table, let’s analyze each expression step-by-step. Here’s a breakdown of the symbols and operations involved:

  1. p XOR q ( pqp \oplus q ): This is true if and only if pp and qq have different truth values.
  2. p XOR NOT q ( pqp \oplus \sim q ): This is true if and only if pp and q\sim q have different truth values.
  3. ( pqp \oplus q ) OR ( pqp \oplus \sim q ): This expression is true if either pqp \oplus q or pqp \oplus \sim q is true.
  4. ( pqp \oplus q ) AND ( pqp \oplus \sim q ): This expression is true only if both pqp \oplus q and pqp \oplus \sim q are true.

Let’s evaluate these for each combination of pp and qq values (T = True, F = False):

Step-by-Step Evaluation:

pqpqp \oplus qpqp \oplus \sim q(pq)(pq)(p \oplus q) \lor (p \oplus \sim q)(pq)(pq)(p \oplus q) \land (p \oplus \sim q)
TTFTTF
TFTTTT
FTTFTF
FFFFFF

Solution for Each Row:

  1. Row 1: p=Tp = T, q=Tq = T

    • pq=Fp \oplus q = F
    • pq=Tp \oplus \sim q = T
    • (pq)(pq)=T(p \oplus q) \lor (p \oplus \sim q) = T
    • (pq)(pq)=F(p \oplus q) \land (p \oplus \sim q) = F
  2. Row 2: p=Tp = T, q=Fq = F

    • pq=Tp \oplus q = T
    • pq=Tp \oplus \sim q = T
    • (pq)(pq)=T(p \oplus q) \lor (p \oplus \sim q) = T
    • (pq)(pq)=T(p \oplus q) \land (p \oplus \sim q) = T
  3. Row 3: p=Fp = F, q=Tq = T

    • pq=Tp \oplus q = T
    • pq=Fp \oplus \sim q = F
    • (pq)(pq)=T(p \oplus q) \lor (p \oplus \sim q) = T
    • (pq)(pq)=F(p \oplus q) \land (p \oplus \sim q) = F
  4. Row 4: p=Fp = F, q=Fq = F

    • pq=Fp \oplus q = F
    • pq=Fp \oplus \sim q = F
    • (pq)(pq)=F(p \oplus q) \lor (p \oplus \sim q) = F
    • (pq)(pq)=F(p \oplus q) \land (p \oplus \sim q) = F

Would you like further details on any step or concept?

Related Questions:

  1. What is the difference between XOR and AND operators in Boolean logic?
  2. How do truth tables help in understanding logical expressions?
  3. Why is pqp \oplus q true only when pp and qq are different?
  4. How would this table look if we used NOR and NAND instead of OR and AND?
  5. What practical applications use XOR operations?

Tip:

When analyzing truth tables, break down complex expressions step-by-step to understand each intermediate result before combining them.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logic
Truth Tables
XOR Operation
Boolean Algebra

Formulas

p XOR q
p XOR NOT q
(p XOR q) OR (p XOR NOT q)
(p XOR q) AND (p XOR NOT q)

Theorems

Properties of XOR in Boolean Algebra

Suitable Grade Level

Grades 10-12