Math Problem Statement

Construct a truth table for p → (q ∨ ~p). Use T for true and F for false.

Solution

To construct a truth table for the expression p(qp)p \rightarrow (q \lor \sim p), let's break down each component step-by-step and evaluate the expression for all possible truth values of pp and qq.

Step 1: Identify the Components

The expression p(qp)p \rightarrow (q \lor \sim p) has three parts:

  1. pp
  2. qq
  3. p\sim p (the negation of pp)

Step 2: Construct the Inner Expression qpq \lor \sim p

The part inside the parentheses, qpq \lor \sim p, represents a logical "OR" operation between qq and the negation of pp.

Step 3: Evaluate p(qp)p \rightarrow (q \lor \sim p)

The outermost part, p(qp)p \rightarrow (q \lor \sim p), is a conditional ("if-then") statement.

Truth Table

Let's fill in the truth values step-by-step for all four possible combinations of pp and qq.

ppqqp\sim pqpq \lor \sim pp(qp)p \rightarrow (q \lor \sim p)
TTFTT
TFFFF
FTTTT
FFTTT

Explanation of the Truth Table Rows

  1. Row 1: p=Tp = T, q=Tq = T

    • p=F\sim p = F
    • qp=TF=Tq \lor \sim p = T \lor F = T
    • p(qp)=TT=Tp \rightarrow (q \lor \sim p) = T \rightarrow T = T
  2. Row 2: p=Tp = T, q=Fq = F

    • p=F\sim p = F
    • qp=FF=Fq \lor \sim p = F \lor F = F
    • p(qp)=TF=Fp \rightarrow (q \lor \sim p) = T \rightarrow F = F
  3. Row 3: p=Fp = F, q=Tq = T

    • p=T\sim p = T
    • qp=TT=Tq \lor \sim p = T \lor T = T
    • p(qp)=FT=Tp \rightarrow (q \lor \sim p) = F \rightarrow T = T
  4. Row 4: p=Fp = F, q=Fq = F

    • p=T\sim p = T
    • qp=FT=Tq \lor \sim p = F \lor T = T
    • p(qp)=FT=Tp \rightarrow (q \lor \sim p) = F \rightarrow T = T

Would you like further explanation on each step?

Related Questions:

  1. What are the truth values for other logical operators like "AND" and "OR"?
  2. How does negation affect the truth value of a statement?
  3. Can we simplify p(qp)p \rightarrow (q \lor \sim p) using logical equivalences?
  4. How do truth tables help in understanding logical arguments?
  5. What are other common truth tables used in propositional logic?

Tip:

Remember that for a conditional statement pqp \rightarrow q, if pp is false, the statement is always true regardless of qq.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logic
Truth Tables
Propositional Logic

Formulas

Conditional: p → q = ¬p ∨ q
Disjunction: q ∨ r
Negation: ~p

Theorems

Truth table for logical conditionals
Rules for logical OR and negation

Suitable Grade Level

University-level (Introductory Logic/Discrete Mathematics)