Math Problem Statement

Tuliskan tabel kebenaran untuk setiap proposisi berikut: (p ∧ q) ∨ (¬q ∧ r)

Solution

The given proposition is:

(pq)(¬qr)(p \land q) \lor (\neg q \land r)

We will create a truth table for this logical expression. The table will consider all possible truth values for pp, qq, and rr, and then evaluate the expression step by step.

  1. First, we will evaluate pqp \land q.
  2. Then, we will evaluate ¬q\neg q.
  3. After that, we'll evaluate ¬qr\neg q \land r.
  4. Finally, we combine pqp \land q and ¬qr\neg q \land r with the disjunction (\lor) to get the final result.

Let me construct the truth table now.Here is the truth table for the proposition (pq)(¬qr)(p \land q) \lor (\neg q \land r):

\hline p & q & r & p \land q & \neg q & \neg q \land r & (p \land q) \lor (\neg q \land r) \\ \hline \text{True} & \text{True} & \text{True} & \text{True} & \text{False} & \text{False} & \text{True} \\ \text{True} & \text{True} & \text{False} & \text{True} & \text{False} & \text{False} & \text{True} \\ \text{True} & \text{False} & \text{True} & \text{False} & \text{True} & \text{True} & \text{True} \\ \text{True} & \text{False} & \text{False} & \text{False} & \text{True} & \text{False} & \text{False} \\ \text{False} & \text{True} & \text{True} & \text{False} & \text{False} & \text{False} & \text{False} \\ \text{False} & \text{True} & \text{False} & \text{False} & \text{False} & \text{False} & \text{False} \\ \text{False} & \text{False} & \text{True} & \text{False} & \text{True} & \text{True} & \text{True} \\ \text{False} & \text{False} & \text{False} & \text{False} & \text{True} & \text{False} & \text{False} \\ \hline \end{array}$$ Would you like further clarification or details on this? Here are five related questions for further exploration: 1. How does the truth table change for the expression $$p \lor q$$? 2. What is the truth table for $$(p \land \neg q) \lor (r \land \neg p)$$? 3. Can you explain how negation ($$\neg$$) impacts truth values in general? 4. What is the truth table for an implication $$p \to q$$? 5. How do you interpret logical equivalence between two propositions? **Tip**: Understanding how each logical operator works individually can make constructing truth tables easier and faster.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logic
Propositional Logic
Truth Tables

Formulas

Conjunction (∧) truth values: True if both operands are True.
Disjunction (∨) truth values: True if at least one operand is True.
Negation (¬) truth values: Inverts the truth value.

Theorems

Basic truth table construction for logical operators

Suitable Grade Level

Grades 10-12