Math Problem Statement

Construct the truth table for (p ↔ q) ⊕ ¬(p ↔ q). Show that ¬∀x(P(x) → Q(x)) and ∃x(P(x) ∧ ¬Q(x)) are logically equivalent.

Solution

Let’s address the problems in the image:


23. Construct the truth table for (pq)¬(pq)(p \leftrightarrow q) \oplus \neg(p \leftrightarrow q):

This involves:

  1. pqp \leftrightarrow q: Logical equivalence between pp and qq (True if both are the same).
  2. ¬(pq)\neg(p \leftrightarrow q): Negation of the equivalence.
  3. (pq)¬(pq)(p \leftrightarrow q) \oplus \neg(p \leftrightarrow q): Exclusive OR (True if one operand is true and the other is false).

The truth table:

ppqqpqp \leftrightarrow q¬(pq)\neg(p \leftrightarrow q)(pq)¬(pq)(p \leftrightarrow q) \oplus \neg(p \leftrightarrow q)
TTTFT
TFFTT
FTFTT
FFTFT

The result is always true.


24. Show that ¬x(P(x)Q(x))\neg \forall x (P(x) \to Q(x)) and x(P(x)¬Q(x))\exists x (P(x) \land \neg Q(x)) are logically equivalent:

Proof:

  1. The expression P(x)Q(x)P(x) \to Q(x) is equivalent to ¬P(x)Q(x)\neg P(x) \lor Q(x) (definition of implication).

  2. ¬x(P(x)Q(x))\neg \forall x (P(x) \to Q(x)):

    • This means there exists an xx such that ¬(P(x)Q(x))\neg (P(x) \to Q(x)).

    • Substituting the equivalence P(x)Q(x)P(x) \to Q(x), we have: ¬(P(x)Q(x))=¬(¬P(x)Q(x))=P(x)¬Q(x).\neg (P(x) \to Q(x)) = \neg (\neg P(x) \lor Q(x)) = P(x) \land \neg Q(x).

    • Therefore, ¬x(P(x)Q(x))x(P(x)¬Q(x))\neg \forall x (P(x) \to Q(x)) \equiv \exists x (P(x) \land \neg Q(x)).

This completes the proof of equivalence.


Do you need further clarification or examples? Here are five questions to explore further:

  1. Can you explain the operation \oplus in Boolean algebra with examples?
  2. How can we interpret the truth table result of (pq)¬(pq)(p \leftrightarrow q) \oplus \neg(p \leftrightarrow q)?
  3. What are some other logical equivalences similar to ¬x\neg \forall x and x\exists x?
  4. How do these concepts apply in predicate logic in computer science or mathematics?
  5. Can you derive P(x)¬Q(x)P(x) \land \neg Q(x) directly using laws of logic?

Tip: Always simplify logical expressions step-by-step to ensure clarity and accuracy.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Propositional Logic
Predicate Logic
Logical Equivalence
Truth Tables

Formulas

Implication: P → Q ≡ ¬P ∨ Q
Logical Equivalence: ¬∀x(P(x) → Q(x)) ≡ ∃x(P(x) ∧ ¬Q(x))
Exclusive OR (XOR): A ⊕ B is true when A and B differ

Theorems

Laws of Negation
Equivalence of Quantifiers
Truth Table Construction

Suitable Grade Level

Undergraduate Level or Advanced High School