Math Problem Statement

Truth table

Solution

To create a truth table for the given logical expression:

(p¬r)¬[(¬qr)¬p](p \leftrightarrow \neg r) \lor \neg [(\neg q \rightarrow r) \land \neg p]

I'll first break down the expression into smaller components, compute each part, and then use these to form the complete truth table. Let's proceed step by step.

Step 1: Identify the variables

The variables involved are pp, qq, and rr. Since we have three variables, there will be 23=82^3 = 8 possible combinations of truth values.

Step 2: Compute the truth values of each component

  1. ¬r\neg r (the negation of rr)
  2. p¬rp \leftrightarrow \neg r (biconditional between pp and ¬r\neg r)
  3. ¬q\neg q (the negation of qq)
  4. ¬qr\neg q \rightarrow r (implication from ¬q\neg q to rr)
  5. ¬[(¬qr)¬p]\neg [(\neg q \rightarrow r) \land \neg p] (negation of the conjunction of the implication and ¬p\neg p)
  6. Finally, (p¬r)¬[(¬qr)¬p](p \leftrightarrow \neg r) \lor \neg [(\neg q \rightarrow r) \land \neg p] (the disjunction of the biconditional and the negation).

Step 3: Construct the truth table

I'll generate the truth table based on these components.

ppqqrr¬r\neg rp¬rp \leftrightarrow \neg r¬q\neg q¬qr\neg q \rightarrow r¬p\neg p(¬qr)¬p(\neg q \rightarrow r) \land \neg p¬[(¬qr)¬p]\neg[(\neg q \rightarrow r) \land \neg p](p¬r)¬[(¬qr)¬p](p \leftrightarrow \neg r) \lor \neg[(\neg q \rightarrow r) \land \neg p]
TTTFFFTFFTT
TTFTTFFFFTT
TFTFFTTFFTT
TFFTTTFFFTT
FTTFTFTTTFT
FTFTFFTTTFF
FFTFTTTTTFT
FFFTFTFTFTT

Explanation:

  • p,q,rp, q, r: The basic truth values.
  • ¬r\neg r: Negation of rr.
  • p¬rp \leftrightarrow \neg r: True when pp and ¬r\neg r have the same truth value.
  • ¬q\neg q: Negation of qq.
  • ¬qr\neg q \rightarrow r: True when either ¬q\neg q is false or rr is true.
  • (¬qr)¬p(\neg q \rightarrow r) \land \neg p: True when both (¬qr)(\neg q \rightarrow r) and ¬p\neg p are true.
  • ¬[(¬qr)¬p]\neg[(\neg q \rightarrow r) \land \neg p]: The negation of the above conjunction.
  • Final column: The result of the disjunction in the original expression.

This truth table represents all possible outcomes for the given logical expression.

Would you like further details, or do you have any questions?


Here are five follow-up questions that build on this information:

  1. How does the biconditional operator \leftrightarrow differ from the implication \rightarrow?
  2. What effect does the negation operator have on logical expressions?
  3. How would the truth table change if pp were replaced by qq in the original expression?
  4. Can you identify any tautologies or contradictions in the given expression?
  5. How can we simplify the given logical expression using logical equivalences?

Tip: When constructing truth tables, it's helpful to break down complex expressions into smaller components to make the process more manageable.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logic
Truth Tables

Formulas

-

Theorems

-

Suitable Grade Level

Grades 10-12