Math Problem Statement

Consider an n+ polysilicon gate Si MOSFET with boron doping concentration of 10^17 cm^-3 in the channel and gate oxide (HfO2) thickness of 4 nm. Calculate the threshold voltage of the device for trapped charge density of 10^12 cm^-2 at temperature T = 300 K. Use the dielectric constant of HfO2 (k_ox) = 25, dielectric constant of Si (k_Si) = 11.7, the permittivity of vacuum (ε_0) = 8.85 × 10^-14 F/cm, and intrinsic carrier concentration in Si (n_i) = 1.5 × 10^10 cm^-3.

Solution

To calculate the threshold voltage (VthV_{th}) for the given MOSFET, let us break the problem into parts:

Given data:

  1. Boron doping concentration (NAN_A): 1017cm310^{17} \, \text{cm}^{-3}
  2. Oxide thickness (toxt_{ox}): 4nm=4×107cm4 \, \text{nm} = 4 \times 10^{-7} \, \text{cm}
  3. Trapped charge density (QoxQ_{ox}): 1012cm210^{12} \, \text{cm}^{-2}
  4. Dielectric constant of HfO2_2 (koxk_{ox}): 2525
  5. Dielectric constant of Si (kSik_{Si}): 11.711.7
  6. Permittivity of vacuum (ε0\varepsilon_0): 8.85×1014F/cm8.85 \times 10^{-14} \, \text{F/cm}
  7. Intrinsic carrier concentration (nin_i): 1.5×1010cm31.5 \times 10^{10} \, \text{cm}^{-3}
  8. Temperature (TT): 300K300 \, \text{K}

Step 1: Oxide capacitance per unit area (CoxC_{ox})

The oxide capacitance is calculated using: Cox=εoxtoxC_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} where εox=koxε0\varepsilon_{ox} = k_{ox} \varepsilon_0.

εox=25×8.85×1014=2.2125×1012F/cm\varepsilon_{ox} = 25 \times 8.85 \times 10^{-14} = 2.2125 \times 10^{-12} \, \text{F/cm}

Cox=2.2125×10124×107=5.53125×106F/cm2C_{ox} = \frac{2.2125 \times 10^{-12}}{4 \times 10^{-7}} = 5.53125 \times 10^{-6} \, \text{F/cm}^2

Step 2: Fermi potential (ϕF\phi_F)

The Fermi potential is given by: ϕF=kTqln(NAni)\phi_F = \frac{kT}{q} \ln{\left( \frac{N_A}{n_i} \right)} where kTq=0.0259V\frac{kT}{q} = 0.0259 \, \text{V} at 300K300 \, \text{K}.

ϕF=0.0259ln(10171.5×1010)=0.0259ln(6.67×106)\phi_F = 0.0259 \ln{\left( \frac{10^{17}}{1.5 \times 10^{10}} \right)} = 0.0259 \ln{\left( 6.67 \times 10^6 \right)}

ϕF=0.0259×15.71=0.407V\phi_F = 0.0259 \times 15.71 = 0.407 \, \text{V}

Step 3: Threshold voltage (VthV_{th})

The threshold voltage is calculated as: Vth=VFB+2ϕF+4εSiqNA(2ϕF)CoxV_{th} = V_{FB} + 2\phi_F + \frac{\sqrt{4 \varepsilon_{Si} q N_A (2\phi_F)}}{C_{ox}} where:

  • VFB=QoxCoxV_{FB} = -\frac{Q_{ox}}{C_{ox}} is the flat-band voltage.
  • εSi=kSiε0\varepsilon_{Si} = k_{Si} \varepsilon_0.

Flat-band voltage (VFBV_{FB}):

VFB=QoxCox=1012×1.6×10195.53125×106V_{FB} = -\frac{Q_{ox}}{C_{ox}} = -\frac{10^{12} \times 1.6 \times 10^{-19}}{5.53125 \times 10^{-6}}

VFB=0.029VV_{FB} = -0.029 \, \text{V}

Bulk charge term:

εSi=11.7×8.85×1014=1.03545×1012F/cm\varepsilon_{Si} = 11.7 \times 8.85 \times 10^{-14} = 1.03545 \times 10^{-12} \, \text{F/cm}

4εSiqNA(2ϕF)=4×1.03545×1012×1.6×1019×1017×0.814\sqrt{4 \varepsilon_{Si} q N_A (2\phi_F)} = \sqrt{4 \times 1.03545 \times 10^{-12} \times 1.6 \times 10^{-19} \times 10^{17} \times 0.814}

=5.386×1012=7.34×106C/cm2= \sqrt{5.386 \times 10^{-12}} = 7.34 \times 10^{-6} \, \text{C/cm}^2

4εSiqNA(2ϕF)Cox=7.34×1065.53125×106=1.327V\frac{\sqrt{4 \varepsilon_{Si} q N_A (2\phi_F)}}{C_{ox}} = \frac{7.34 \times 10^{-6}}{5.53125 \times 10^{-6}} = 1.327 \, \text{V}

Total VthV_{th}:

Vth=0.029+2(0.407)+1.327V_{th} = -0.029 + 2(0.407) + 1.327

Vth=2.112VV_{th} = 2.112 \, \text{V}

Final Answer:

The threshold voltage (VthV_{th}) is approximately 2.11 V.

Do you want details on any specific step or have further questions?


Here are five follow-up questions:

  1. How does the oxide thickness affect the threshold voltage?
  2. Why is the Fermi potential (ϕF\phi_F) dependent on doping concentration?
  3. How is the flat-band voltage (VFBV_{FB}) influenced by trapped charges?
  4. What is the role of the dielectric constant of the oxide in determining CoxC_{ox}?
  5. How would the threshold voltage change if the doping concentration were reduced?

Tip: Always ensure units are consistent when calculating VthV_{th} components.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Semiconductor physics
Electrostatics
Threshold voltage calculation

Formulas

C_ox = ε_ox / t_ox
φ_F = (kT/q) * ln(N_A / n_i)
V_th = V_FB + 2φ_F + (sqrt(4 * ε_Si * q * N_A * 2φ_F) / C_ox)

Theorems

Flat-band voltage calculation using charge density and oxide capacitance
Threshold voltage model for MOSFETs

Suitable Grade Level

Undergraduate (Electrical Engineering/Physics)