Math Problem Statement

Find the volume of the tetrahedron having the given vertices: (5, 4, -3), (-6, -6, -5), (4, -6, -4), (0, 0, 10).

Solution

To find the volume of a tetrahedron given vertices A(5,4,3)A(5, 4, -3), B(6,6,5)B(-6, -6, -5), C(4,6,4)C(4, -6, -4), and D(0,0,10)D(0, 0, 10), we can use the following formula:

V=16AB(AC×AD)V = \frac{1}{6} \left| \vec{AB} \cdot (\vec{AC} \times \vec{AD}) \right|

Step-by-Step Solution

  1. Find Vectors AB\vec{AB}, AC\vec{AC}, and AD\vec{AD}:

    AB=(65,64,5+3)=(11,10,2)\vec{AB} = (-6 - 5, -6 - 4, -5 + 3) = (-11, -10, -2) AC=(45,64,4+3)=(1,10,1)\vec{AC} = (4 - 5, -6 - 4, -4 + 3) = (-1, -10, -1) AD=(05,04,10+3)=(5,4,13)\vec{AD} = (0 - 5, 0 - 4, 10 + 3) = (-5, -4, 13)

  2. Compute the Cross Product AC×AD\vec{AC} \times \vec{AD}:

    Using the determinant for the cross product: AC×AD=i^j^k^11015413\vec{AC} \times \vec{AD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & -10 & -1 \\ -5 & -4 & 13 \end{vmatrix}

    Expanding the determinant: AC×AD=i^((10)(13)(1)(4))j^((1)(13)(1)(5))+k^((1)(4)(10)(5))\vec{AC} \times \vec{AD} = \hat{i}( (-10)(13) - (-1)(-4) ) - \hat{j}( (-1)(13) - (-1)(-5) ) + \hat{k}( (-1)(-4) - (-10)(-5) )

    Simplifying each component: =i^(1304)j^(135)+k^(450)= \hat{i}(-130 - 4) - \hat{j}(-13 - 5) + \hat{k}(4 - 50) =i^(134)+j^(18)k^(46)= \hat{i}(-134) + \hat{j}(18) - \hat{k}(46) So, AC×AD=(134,18,46)\vec{AC} \times \vec{AD} = (-134, 18, -46)

  3. Calculate the Dot Product AB(AC×AD)\vec{AB} \cdot (\vec{AC} \times \vec{AD}):

    AB(AC×AD)=(11)(134)+(10)(18)+(2)(46)\vec{AB} \cdot (\vec{AC} \times \vec{AD}) = (-11)(-134) + (-10)(18) + (-2)(-46) =1474180+92=1386= 1474 - 180 + 92 = 1386

  4. Calculate the Volume:

    V=161386=13866=231V = \frac{1}{6} |1386| = \frac{1386}{6} = 231

Final Answer

The volume of the tetrahedron is: 231\boxed{231}

Would you like further details or have any questions?


  1. How is the cross product of two vectors calculated in 3D?
  2. What are some other methods to find the volume of a tetrahedron in 3D?
  3. How does the determinant help in calculating vector products?
  4. Why is the factor 16\frac{1}{6} used in the volume formula for a tetrahedron?
  5. Can this method be applied to any shape other than a tetrahedron?

Tip: Always double-check calculations, especially signs, when dealing with vector products, as mistakes can lead to incorrect volume values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Geometry
Linear Algebra
Cross Product
Dot Product
Volume of Tetrahedron

Formulas

V = (1/6) |AB · (AC × AD)|
Cross product formula using determinant
Dot product of vectors

Theorems

Vector cross product
Volume of a tetrahedron using vector products

Suitable Grade Level

Grades 11-12