Math Problem Statement

Вычислить объем тетраэдра с вершинами в точках A(2, -3, 5), B(0, 2, 1), C(-2, -2, 3) и D(3, 2, 4).

Solution

To calculate the volume of a tetrahedron with vertices A(2,3,5)A(2, -3, 5), B(0,2,1)B(0, 2, 1), C(2,2,3)C(-2, -2, 3), and D(3,2,4)D(3, 2, 4), we use the determinant formula:

x_B - x_A & x_C - x_A & x_D - x_A \\ y_B - y_A & y_C - y_A & y_D - y_A \\ z_B - z_A & z_C - z_A & z_D - z_A \end{bmatrix} \right|$$ ### Step 1: Define the vectors - $$\vec{AB} = B - A = (0 - 2, 2 - (-3), 1 - 5) = (-2, 5, -4)$$ - $$\vec{AC} = C - A = (-2 - 2, -2 - (-3), 3 - 5) = (-4, 1, -2)$$ - $$\vec{AD} = D - A = (3 - 2, 2 - (-3), 4 - 5) = (1, 5, -1)$$ ### Step 2: Construct the determinant The matrix is: $$\begin{bmatrix} -2 & -4 & 1 \\ 5 & 1 & 5 \\ -4 & -2 & -1 \end{bmatrix}$$ ### Step 3: Compute the determinant We expand the determinant as follows: $$\text{det} = -2 \cdot \begin{vmatrix} 1 & 5 \\ -2 & -1 \end{vmatrix} -4 \cdot \begin{vmatrix} 5 & 5 \\ -4 & -1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 5 & 1 \\ -4 & -2 \end{vmatrix}$$ #### Sub-determinants: 1. $$\begin{vmatrix} 1 & 5 \\ -2 & -1 \end{vmatrix} = (1)(-1) - (5)(-2) = -1 + 10 = 9$$ 2. $$\begin{vmatrix} 5 & 5 \\ -4 & -1 \end{vmatrix} = (5)(-1) - (5)(-4) = -5 + 20 = 15$$ 3. $$\begin{vmatrix} 5 & 1 \\ -4 & -2 \end{vmatrix} = (5)(-2) - (1)(-4) = -10 + 4 = -6$$ #### Substitute back: $$\text{det} = -2(9) - 4(15) + 1(-6) = -18 - 60 - 6 = -84$$ ### Step 4: Calculate the volume $$V = \frac{1}{6} \left| -84 \right| = \frac{84}{6} = 14$$ ### Final Answer: The volume of the tetrahedron is: $$\boxed{14 \, \text{units}^3}$$ --- Would you like further clarification or another example? Here are five related questions to explore further: 1. How is the determinant formula for tetrahedron volume derived? 2. Can the volume of a tetrahedron be calculated using the cross and dot product? 3. What happens to the volume if one vertex coincides with another? 4. How can the formula be generalized to higher dimensions (e.g., 4D simplex)? 5. What if the vertices were given in parametric form—how would the volume be computed? ### Tip: When working with determinants, simplify step-by-step to avoid sign errors and double-check sub-determinants.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Analytic Geometry
Vectors
Determinants
Volume of a Tetrahedron

Formulas

Volume of a Tetrahedron: V = (1/6) |det|
Determinant of a 3x3 matrix

Theorems

Determinant theorem for calculating the volume of a tetrahedron

Suitable Grade Level

Grades 11-12 / Advanced High School