Math Problem Statement

Find the exact area of the surface obtained by rotating the given curve about the x-axis. x = 9t − 3t3, y = 9t2, 0 ≤ t ≤ 2

Solution

To find the exact area of the surface obtained by rotating the given curve about the xx-axis, we use the formula for the surface area of revolution:

S=2πaby(dxdt)2+(dydt)2dtS = 2\pi \int_{a}^{b} y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt

Step 1: Compute dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}

The given parametric equations are: x=9t3t3,y=9t2x = 9t - 3t^3, \quad y = 9t^2 Differentiating xx and yy with respect to tt: dxdt=99t2,dydt=18t\frac{dx}{dt} = 9 - 9t^2, \quad \frac{dy}{dt} = 18t

Step 2: Find (dxdt)2+(dydt)2\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}

Substitute the derivatives: (dxdt)2=(99t2)2=81162t2+81t4\left(\frac{dx}{dt}\right)^2 = (9 - 9t^2)^2 = 81 - 162t^2 + 81t^4 (dydt)2=(18t)2=324t2\left(\frac{dy}{dt}\right)^2 = (18t)^2 = 324t^2 Add them: (dxdt)2+(dydt)2=81162t2+81t4+324t2\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = 81 - 162t^2 + 81t^4 + 324t^2 Simplify: (dxdt)2+(dydt)2=81+162t2+81t4\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = 81 + 162t^2 + 81t^4

Thus: (dxdt)2+(dydt)2=81+162t2+81t4\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{81 + 162t^2 + 81t^4}

Step 3: Set up the integral

The surface area formula becomes: S=2π02y81+162t2+81t4dtS = 2\pi \int_{0}^{2} y \sqrt{81 + 162t^2 + 81t^4} \, dt Substitute y=9t2y = 9t^2: S=2π02(9t2)81+162t2+81t4dtS = 2\pi \int_{0}^{2} (9t^2) \sqrt{81 + 162t^2 + 81t^4} \, dt Factor out 8181 from the square root: S=2π029t281(1+2t2+t4)dtS = 2\pi \int_{0}^{2} 9t^2 \sqrt{81(1 + 2t^2 + t^4)} \, dt S=2π029t291+2t2+t4dtS = 2\pi \int_{0}^{2} 9t^2 \cdot 9\sqrt{1 + 2t^2 + t^4} \, dt S=162π02t21+2t2+t4dtS = 162\pi \int_{0}^{2} t^2 \sqrt{1 + 2t^2 + t^4} \, dt

Step 4: Simplify and solve the integral

The integrand is simplified as: 1+2t2+t4=(1+t2)\sqrt{1 + 2t^2 + t^4} = (1 + t^2) Thus: S=162π02t2(1+t2)dtS = 162\pi \int_{0}^{2} t^2 (1 + t^2) \, dt

Expand the product: S=162π02(t2+t4)dtS = 162\pi \int_{0}^{2} (t^2 + t^4) \, dt Split into two integrals: S=162π(02t2dt+02t4dt)S = 162\pi \left( \int_{0}^{2} t^2 \, dt + \int_{0}^{2} t^4 \, dt \right)

Compute the integrals:

  1. For 02t2dt\int_{0}^{2} t^2 \, dt: t2dt=t33,evaluate from 0 to 2:\int t^2 \, dt = \frac{t^3}{3}, \quad \text{evaluate from } 0 \text{ to } 2: 02t2dt=233033=83\int_{0}^{2} t^2 \, dt = \frac{2^3}{3} - \frac{0^3}{3} = \frac{8}{3}

  2. For 02t4dt\int_{0}^{2} t^4 \, dt: t4dt=t55,evaluate from 0 to 2:\int t^4 \, dt = \frac{t^5}{5}, \quad \text{evaluate from } 0 \text{ to } 2: 02t4dt=255055=325\int_{0}^{2} t^4 \, dt = \frac{2^5}{5} - \frac{0^5}{5} = \frac{32}{5}

Substitute back into SS: S=162π(83+325)S = 162\pi \left( \frac{8}{3} + \frac{32}{5} \right)

Step 5: Combine terms

Find a common denominator for 83+325\frac{8}{3} + \frac{32}{5}: 83=4015,325=9615\frac{8}{3} = \frac{40}{15}, \quad \frac{32}{5} = \frac{96}{15} 83+325=4015+9615=13615\frac{8}{3} + \frac{32}{5} = \frac{40}{15} + \frac{96}{15} = \frac{136}{15}

Thus: S=162π13615S = 162\pi \cdot \frac{136}{15} Simplify: S=162136π15=22032π15=1468.8πS = \frac{162 \cdot 136 \cdot \pi}{15} = \frac{22032\pi}{15} = 1468.8\pi

The exact surface area is: S=22032π15S = \frac{22032\pi}{15}

Would you like further details or a breakdown of any specific step?

Related Questions

  1. What is the significance of parametric equations in calculating surface areas of revolution?
  2. How does the choice of axis affect the formula for surface area?
  3. Can the integral for surface area always be solved explicitly, or are numerical methods sometimes necessary?
  4. How would the problem change if the curve were revolved about the yy-axis instead?
  5. How does factoring out common terms simplify the computation of integrals?

Tip: Always check if the square root in the integral can be simplified, as it can save significant computational effort!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Parametric Equations
Calculus
Surface Area of Revolution
Integration

Formulas

Surface area of revolution formula: S = 2π ∫ y √((dx/dt)^2 + (dy/dt)^2) dt

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12 and Undergraduate