Math Problem Statement

Укажите все верные утверждения: Скaлярное произведение нормальных векторов плоскостей... [user's screenshot text continues].

Solution

Let's analyze the given statements one by one:

  1. "Скалярное произведение нормальных векторов плоскостей, принадлежащих одной связке плоскостей, всегда отлично от нуля."

    • This statement is incorrect. If two planes belong to the same "family" of planes, their normal vectors might be parallel. In such a case, their scalar product could be zero.
  2. "Плоскость 2x+4yz+8=02x + 4y - z + 8 = 0 пересекает ось OxOx в точке (4;0;0)(-4; 0; 0)."

    • To find the intersection of this plane with the OxOx axis, set y=0y = 0 and z=0z = 0 and solve for xx: 2x+8=0x=4.2x + 8 = 0 \quad \Rightarrow \quad x = -4. Thus, the point of intersection is (4,0,0)(-4, 0, 0), making this statement correct.
  3. "Плоскость 2y1=02y - 1 = 0 параллельна координатной плоскости XOZXOZ."

    • The equation of the plane simplifies to y=12y = \frac{1}{2}, which is a plane parallel to the XOZXOZ plane (since it only shifts along the yy-axis). Hence, this statement is correct.
  4. "Уравнения 2x+yz+1=02x + y - z + 1 = 0 и 2x+y+z1=02x + y + z - 1 = 0 определяют одну и ту же плоскость."

    • To determine if these two equations represent the same plane, subtract the second equation from the first: (2x+yz+1)(2x+y+z1)=0,(2x + y - z + 1) - (2x + y + z - 1) = 0, which simplifies to: 2z+2=0z=1.-2z + 2 = 0 \quad \Rightarrow \quad z = 1. Since this leads to z=1z = 1, it shows that the two equations represent different planes. Therefore, this statement is incorrect.

Summary of Correct Statements:

  • The second statement about the plane intersecting the OxOx axis at (4,0,0)(-4, 0, 0).
  • The third statement about the plane 2y1=02y - 1 = 0 being parallel to the XOZXOZ plane.

Would you like more details or have any further questions?

Here are 5 related questions:

  1. How can you determine if two planes are parallel?
  2. What does the scalar product of two normal vectors represent geometrically?
  3. How do you find the intersection of a plane with a specific axis?
  4. What is the relationship between the equations of two parallel planes?
  5. How can we verify if two planes are identical based on their equations?

Tip: When checking if two planes are parallel, their normal vectors should be scalar multiples of each other.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Стереометрия
Скалярное произведение
Плоскости в пространстве
Параллельность плоскостей
Векторы нормали

Formulas

Скалярное произведение: a·b = |a||b|cos(θ)
Уравнение плоскости: Ax + By + Cz + D = 0

Theorems

Условия параллельности плоскостей
Метод нахождения пересечений плоскостей с координатными осями

Suitable Grade Level

Grades 10-11