Math Problem Statement

an = 2/π\pi \displaylines0π ⁣x.cosx.cos(nx)dx\placeholder{\displaylines\int_0^{\pi}\!x.\cos x.\cos\left(\text{nx}\right)\,\mathrm{d}x\\ \placeholder{}\\ }

Solution

The integral provided is as follows:

an=2π0πxcos(x)cos(nx)dxa_n = \frac{2}{\pi} \int_0^{\pi} x \cos(x) \cos(nx) \, \mathrm{d}x

Let's solve this step by step.

Step 1: Use product-to-sum identities for the cosine terms

We can use the product-to-sum identity for cosine functions to simplify the product of cos(x)\cos(x) and cos(nx)\cos(nx). The identity is:

cos(A)cos(B)=12(cos(AB)+cos(A+B))\cos(A)\cos(B) = \frac{1}{2} \left( \cos(A-B) + \cos(A+B) \right)

Substituting A=xA = x and B=nxB = nx, we get:

cos(x)cos(nx)=12(cos((n1)x)+cos((n+1)x))\cos(x)\cos(nx) = \frac{1}{2} \left( \cos((n-1)x) + \cos((n+1)x) \right)

Thus, the integral becomes:

an=2π0πx12(cos((n1)x)+cos((n+1)x))dxa_n = \frac{2}{\pi} \int_0^{\pi} x \cdot \frac{1}{2} \left( \cos((n-1)x) + \cos((n+1)x) \right) \, \mathrm{d}x

Simplifying:

an=1π0πx(cos((n1)x)+cos((n+1)x))dxa_n = \frac{1}{\pi} \int_0^{\pi} x \left( \cos((n-1)x) + \cos((n+1)x) \right) \, \mathrm{d}x

Step 2: Split the integral

Now, we can split the integral into two parts:

an=1π(0πxcos((n1)x)dx+0πxcos((n+1)x)dx)a_n = \frac{1}{\pi} \left( \int_0^{\pi} x \cos((n-1)x) \, \mathrm{d}x + \int_0^{\pi} x \cos((n+1)x) \, \mathrm{d}x \right)

Step 3: Solve each integral

The integral we need to solve is of the form:

Im=0πxcos(mx)dxI_m = \int_0^{\pi} x \cos(mx) \, \mathrm{d}x

This integral can be solved using integration by parts. Let’s compute this integral next:

  1. Choose u=xu = x and dv=cos(mx)dxdv = \cos(mx) \, dx.
  2. Then, du=dxdu = dx and v=sin(mx)mv = \frac{\sin(mx)}{m}.

Now, applying integration by parts:

Im=[xsin(mx)m]0π0πsin(mx)mdxI_m = \left[ \frac{x \sin(mx)}{m} \right]_0^{\pi} - \int_0^{\pi} \frac{\sin(mx)}{m} \, dx

The boundary terms become:

[xsin(mx)m]0π=πsin(mπ)m0sin(0)m=0\left[ \frac{x \sin(mx)}{m} \right]_0^{\pi} = \frac{\pi \sin(m\pi)}{m} - \frac{0 \sin(0)}{m} = 0

Since sin(mπ)=0\sin(m\pi) = 0, the first part vanishes.

Now, for the remaining integral:

Im=1m0πsin(mx)dxI_m = -\frac{1}{m} \int_0^{\pi} \sin(mx) \, dx

The integral of sin(mx)\sin(mx) is:

sin(mx)dx=cos(mx)m\int \sin(mx) \, dx = -\frac{\cos(mx)}{m}

Thus,

Im=1m[cos(mx)m]0π=1m2(cos(mπ)cos(0))I_m = -\frac{1}{m} \left[ -\frac{\cos(mx)}{m} \right]_0^{\pi} = \frac{1}{m^2} \left( \cos(m\pi) - \cos(0) \right)

We know that cos(mπ)=(1)m\cos(m\pi) = (-1)^m and cos(0)=1\cos(0) = 1, so:

Im=1m2((1)m1)I_m = \frac{1}{m^2} \left( (-1)^m - 1 \right)

Step 4: Apply this result to our integrals

For the first integral, m=n1m = n-1:

In1=1(n1)2((1)n11)I_{n-1} = \frac{1}{(n-1)^2} \left( (-1)^{n-1} - 1 \right)

For the second integral, m=n+1m = n+1:

In+1=1(n+1)2((1)n+11)I_{n+1} = \frac{1}{(n+1)^2} \left( (-1)^{n+1} - 1 \right)

Step 5: Combine the results

Substituting the results of the integrals back into the expression for ana_n, we get:

an=1π(1(n1)2((1)n11)+1(n+1)2((1)n+11))a_n = \frac{1}{\pi} \left( \frac{1}{(n-1)^2} \left( (-1)^{n-1} - 1 \right) + \frac{1}{(n+1)^2} \left( (-1)^{n+1} - 1 \right) \right)

This is the simplified expression for ana_n.

Would you like further clarification or details on any part of this process?


5 related questions:

  1. How does the product-to-sum identity work for trigonometric functions?
  2. Can you explain the steps of integration by parts in more detail?
  3. How do boundary conditions affect definite integrals?
  4. Why does sin(mπ)\sin(m\pi) equal zero in certain integrals?
  5. How would the solution change if a different trigonometric identity was used?

Tip: When using integration by parts, it's important to carefully choose uu and dvdv to simplify the integral efficiently.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Integrals
Integration by Parts
Cosine Product-to-Sum Identity

Formulas

Product-to-Sum Identity: cos(A)cos(B) = 1/2 (cos(A-B) + cos(A+B))
Integration by Parts: ∫u dv = uv - ∫v du

Theorems

Product-to-Sum Identity
Integration by Parts

Suitable Grade Level

Grades 11-12, Undergraduate