We need to evaluate the integral:
I=∫cos(7x)cos(2x)dx
Step 1: Use Product-to-Sum Identity
We use the identity:
cosAcosB=21[cos(A−B)+cos(A+B)]
Setting A=7x and B=2x, we get:
cos(7x)cos(2x)=21[cos(7x−2x)+cos(7x+2x)]
=21[cos(5x)+cos(9x)]
Step 2: Integrate Each Term
Thus, our integral becomes:
I=∫21[cos(5x)+cos(9x)]dx
Splitting it up:
I=21∫cos(5x)dx+21∫cos(9x)dx
We use the standard integral:
∫cos(ax)dx=asin(ax)+C
Applying this:
∫cos(5x)dx=5sin(5x)
∫cos(9x)dx=9sin(9x)
Step 3: Final Answer
I=21(5sin(5x)+9sin(9x))+C
I=10sin(5x)+18sin(9x)+C
Conclusion:
∫cos(7x)cos(2x)dx=10sin(5x)+18sin(9x)+C
Would you like a step-by-step breakdown of any part?
Related Problems:
- Compute ∫cos(3x)cos(5x)dx.
- Evaluate ∫sin(4x)cos(6x)dx.
- Solve ∫cos2(5x)dx using a trigonometric identity.
- Find ∫cos(2x)sin(3x)dx.
- Derive the product-to-sum identity used in this solution.
Tip:
For trigonometric integrals involving products, using product-to-sum identities often simplifies the computation.