Math Problem Statement

integrate cos(7x)cos(2x)

Solution

We need to evaluate the integral:

I=cos(7x)cos(2x)dxI = \int \cos(7x) \cos(2x) \, dx

Step 1: Use Product-to-Sum Identity

We use the identity:

cosAcosB=12[cos(AB)+cos(A+B)]\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]

Setting A=7xA = 7x and B=2xB = 2x, we get:

cos(7x)cos(2x)=12[cos(7x2x)+cos(7x+2x)]\cos(7x) \cos(2x) = \frac{1}{2} [\cos(7x - 2x) + \cos(7x + 2x)]

=12[cos(5x)+cos(9x)]= \frac{1}{2} [\cos(5x) + \cos(9x)]

Step 2: Integrate Each Term

Thus, our integral becomes:

I=12[cos(5x)+cos(9x)]dxI = \int \frac{1}{2} [\cos(5x) + \cos(9x)] \, dx

Splitting it up:

I=12cos(5x)dx+12cos(9x)dxI = \frac{1}{2} \int \cos(5x) \, dx + \frac{1}{2} \int \cos(9x) \, dx

We use the standard integral:

cos(ax)dx=sin(ax)a+C\int \cos(ax) \, dx = \frac{\sin(ax)}{a} + C

Applying this:

cos(5x)dx=sin(5x)5\int \cos(5x) \, dx = \frac{\sin(5x)}{5}

cos(9x)dx=sin(9x)9\int \cos(9x) \, dx = \frac{\sin(9x)}{9}

Step 3: Final Answer

I=12(sin(5x)5+sin(9x)9)+CI = \frac{1}{2} \left( \frac{\sin(5x)}{5} + \frac{\sin(9x)}{9} \right) + C

I=sin(5x)10+sin(9x)18+CI = \frac{\sin(5x)}{10} + \frac{\sin(9x)}{18} + C

Conclusion:

cos(7x)cos(2x)dx=sin(5x)10+sin(9x)18+C\int \cos(7x) \cos(2x) \, dx = \frac{\sin(5x)}{10} + \frac{\sin(9x)}{18} + C

Would you like a step-by-step breakdown of any part?


Related Problems:

  1. Compute cos(3x)cos(5x)dx\int \cos(3x) \cos(5x) \, dx.
  2. Evaluate sin(4x)cos(6x)dx\int \sin(4x) \cos(6x) \, dx.
  3. Solve cos2(5x)dx\int \cos^2(5x) \, dx using a trigonometric identity.
  4. Find cos(2x)sin(3x)dx\int \cos(2x) \sin(3x) \, dx.
  5. Derive the product-to-sum identity used in this solution.

Tip:

For trigonometric integrals involving products, using product-to-sum identities often simplifies the computation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Identities
Product-to-Sum Identities

Formulas

\int \cos(ax) \, dx = \frac{\sin(ax)}{a} + C
\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]

Theorems

Product-to-Sum Identity

Suitable Grade Level

Grades 10-12