Math Problem Statement

integrate x.cosx.sinnx using the u integration v - u' integration2 v + u'' integration3 v formula

Solution

To integrate I=xcos(x)sin(nx)dxI = \int x \cos(x) \sin(nx) \, dx, we'll use the integration by parts repeatedly, following the formula you mentioned:

udv=uvvdu\int u \, dv = uv - \int v \, du

We define our components as:

  • u=xu = x (since it simplifies with differentiation),
  • dv=cos(x)sin(nx)dxdv = \cos(x) \sin(nx) \, dx.

Now, we need to repeatedly differentiate uu and integrate dvdv three times, applying the following steps:

Step 1: First Integration by Parts

Let u=xu = x and dv=cos(x)sin(nx)dxdv = \cos(x) \sin(nx) \, dx.

  1. Differentiate uu:
    du=dxdu = dx

  2. Integrate dvdv (let's use a trigonometric identity):
    cos(x)sin(nx)=12[sin((n+1)x)sin((n1)x)]\cos(x) \sin(nx) = \frac{1}{2} [\sin((n+1)x) - \sin((n-1)x)]

    So, dv=cos(x)sin(nx)dx=12[sin((n+1)x)sin((n1)x)]dxdv = \cos(x) \sin(nx) \, dx = \frac{1}{2} \left[\sin((n+1)x) - \sin((n-1)x)\right] dx

    After integrating: [ v = \frac{1}{2(n+1)} \left[ \cos((n+1)x) \right] - \frac{1}{2(n-1)} \left[ \cos((n-1)x) \right] ]

  3. Now apply the formula: xcos(x)sin(nx)dx=x(12(n+1)cos((n+1)x)12(n1)cos((n1)x))(12(n+1)cos((n+1)x)12(n1)cos((n1)x))dx\int x \cos(x) \sin(nx) \, dx = x \left( \frac{1}{2(n+1)} \cos((n+1)x) - \frac{1}{2(n-1)} \cos((n-1)x) \right) - \int \left( \frac{1}{2(n+1)} \cos((n+1)x) - \frac{1}{2(n-1)} \cos((n-1)x) \right) \, dx

Step 2: Solve the remaining integral

The remaining integral involves two simpler integrals: cos((n+1)x)dx=1n+1sin((n+1)x)\int \cos((n+1)x) \, dx = \frac{1}{n+1} \sin((n+1)x) and cos((n1)x)dx=1n1sin((n1)x).\int \cos((n-1)x) \, dx = \frac{1}{n-1} \sin((n-1)x).

Final Answer

Putting everything together, we get: I=x2(n+1)cos((n+1)x)x2(n1)cos((n1)x)+12(n+1)2sin((n+1)x)12(n1)2sin((n1)x)+CI = \frac{x}{2(n+1)} \cos((n+1)x) - \frac{x}{2(n-1)} \cos((n-1)x) + \frac{1}{2(n+1)^2} \sin((n+1)x) - \frac{1}{2(n-1)^2} \sin((n-1)x) + C

This is the integrated result for xcos(x)sin(nx)dx\int x \cos(x) \sin(nx) \, dx.

Would you like more details or have any questions? Here are five related questions to deepen understanding:

  1. How does integration by parts work for non-trigonometric functions?
  2. What are other methods to integrate trigonometric functions?
  3. How do you handle integrals involving products of trigonometric functions?
  4. Can you apply integration by parts to solve a double integral?
  5. How would the integral change if the product involved cos2(x)\cos^2(x) or sin2(nx)\sin^2(nx)?

Tip: Whenever integrating products of functions, carefully choose uu and dvdv to simplify the overall process.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration by Parts
Trigonometric Integrals
Repeated Integration by Parts

Formulas

Integration by Parts Formula: ∫u dv = uv - ∫v du
Trigonometric Identity: cos(x)sin(nx) = (1/2)[sin((n+1)x) - sin((n-1)x)]

Theorems

Integration by Parts Theorem

Suitable Grade Level

College Level