Math Problem Statement

Use the Law of Sines to solve (if possible) the triangle. If two solutions exist, find both. Round your answers to two decimal places. (If a triangle is not possible, enter IMPOSSIBLE in each corresponding answer blank.) A = 22° 34’, a = 9.5, b = 22

Solution

We are given the following information about the triangle:

  • Angle A=2234A = 22^\circ 34'
  • Side a=9.5a = 9.5
  • Side b=22b = 22

We are tasked with solving for angle BB, angle CC, and side cc using the Law of Sines. Let's break this into steps.

Step 1: Convert Angle A to Decimal Form

To begin, we need to convert angle AA from degrees and minutes to decimal form.

  • 34=3460=0.56734' = \frac{34}{60} = 0.567

Thus: A=22+0.567=22.567A = 22^\circ + 0.567^\circ = 22.567^\circ

Step 2: Apply the Law of Sines

The Law of Sines states: asinA=bsinB=csinC\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}

Using asinA=bsinB\frac{a}{\sin A} = \frac{b}{\sin B}, we can solve for sinB\sin B: 9.5sin22.567=22sinB\frac{9.5}{\sin 22.567^\circ} = \frac{22}{\sin B} First, calculate sin22.567\sin 22.567^\circ: sin22.5670.3838\sin 22.567^\circ \approx 0.3838 Now solve for sinB\sin B: 9.50.3838=22sinB    sinB=22×0.38389.50.889\frac{9.5}{0.3838} = \frac{22}{\sin B} \implies \sin B = \frac{22 \times 0.3838}{9.5} \approx 0.889

Step 3: Find Possible Values of BB

Using the inverse sine function, we find: B1=sin1(0.889)62.77B_1 = \sin^{-1}(0.889) \approx 62.77^\circ

Since sin(θ)=sin(180θ)\sin(\theta) = \sin(180^\circ - \theta), there is also a second possible solution for angle BB: B2=18062.77=117.23B_2 = 180^\circ - 62.77^\circ = 117.23^\circ

Step 4: Check for Triangle Validity

For each value of BB, check if a valid triangle is possible:

  • For B1=62.77B_1 = 62.77^\circ, the sum of angles A+B1A + B_1 is: A+B1=22.567+62.77=85.34A + B_1 = 22.567^\circ + 62.77^\circ = 85.34^\circ The third angle C1C_1 is: C1=18085.34=94.66C_1 = 180^\circ - 85.34^\circ = 94.66^\circ This is a valid triangle.

  • For B2=117.23B_2 = 117.23^\circ, the sum of angles A+B2A + B_2 is: A+B2=22.567+117.23=139.8A + B_2 = 22.567^\circ + 117.23^\circ = 139.8^\circ The third angle C2C_2 is: C2=180139.8=40.2C_2 = 180^\circ - 139.8^\circ = 40.2^\circ This is also a valid triangle.

Step 5: Solve for Side cc

Using the Law of Sines again to find side cc: csinC=asinA\frac{c}{\sin C} = \frac{a}{\sin A}

  • For the first solution (C1=94.66C_1 = 94.66^\circ): c1sin94.66=9.5sin22.567\frac{c_1}{\sin 94.66^\circ} = \frac{9.5}{\sin 22.567^\circ} c19.5×sin94.66sin22.5679.5×0.99860.383824.73c_1 \approx \frac{9.5 \times \sin 94.66^\circ}{\sin 22.567^\circ} \approx \frac{9.5 \times 0.9986}{0.3838} \approx 24.73

  • For the second solution (C2=40.2C_2 = 40.2^\circ): c2sin40.2=9.5sin22.567\frac{c_2}{\sin 40.2^\circ} = \frac{9.5}{\sin 22.567^\circ} c29.5×sin40.2sin22.5679.5×0.64560.383815.96c_2 \approx \frac{9.5 \times \sin 40.2^\circ}{\sin 22.567^\circ} \approx \frac{9.5 \times 0.6456}{0.3838} \approx 15.96

Final Answers:

  • First Solution:

    • B162.77B_1 \approx 62.77^\circ
    • C194.66C_1 \approx 94.66^\circ
    • c124.73c_1 \approx 24.73
  • Second Solution:

    • B2117.23B_2 \approx 117.23^\circ
    • C240.2C_2 \approx 40.2^\circ
    • c215.96c_2 \approx 15.96

Let me know if you need further clarifications or details!

Here are 5 follow-up questions for further practice:

  1. How do you determine if a triangle is possible given its sides and angles?
  2. Can the Law of Sines be used for right triangles?
  3. What is the significance of the ambiguous case in the Law of Sines?
  4. How do you handle obtuse angles when using the Law of Sines?
  5. How does the Law of Cosines differ from the Law of Sines?

Tip: When using the Law of Sines, always check for the ambiguous case, as more than one solution might exist if two angles aren't fully defined.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Triangles
Law of Sines

Formulas

Law of Sines: (a / sin A) = (b / sin B) = (c / sin C)

Theorems

Law of Sines

Suitable Grade Level

Grades 10-12