Math Problem Statement

Use the law of sines to solve the​ triangle, if possible. Aequals30.2degrees​, aequals26​, bequals35 find B C and c

Solution

To solve the triangle using the Law of Sines, we use the formula:

asinA=bsinB=csinC\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}

Given:

  • A=30.2A = 30.2^\circ
  • a=26a = 26
  • b=35b = 35

We need to find:

  • BB
  • CC
  • cc

Step 1: Solve for sinB\sin B

Using the Law of Sines: asinA=bsinB\frac{a}{\sin A} = \frac{b}{\sin B}

Rearranging for sinB\sin B: sinB=bsinAa\sin B = \frac{b \cdot \sin A}{a}

Substitute the values: sinB=35sin(30.2)26\sin B = \frac{35 \cdot \sin(30.2^\circ)}{26}

First, calculate sin(30.2)\sin(30.2^\circ): sin(30.2)0.502\sin(30.2^\circ) \approx 0.502

Now substitute: sinB=350.5022617.57260.676\sin B = \frac{35 \cdot 0.502}{26} \approx \frac{17.57}{26} \approx 0.676

Thus: sinB0.676\sin B \approx 0.676


Step 2: Find BB

To find BB, take the arcsine of sinB\sin B: B=arcsin(0.676)B = \arcsin(0.676)

B42.6B \approx 42.6^\circ


Step 3: Find CC

The sum of angles in a triangle is 180180^\circ: C=180ABC = 180^\circ - A - B

Substitute: C=18030.242.6C = 180^\circ - 30.2^\circ - 42.6^\circ

C107.2C \approx 107.2^\circ


Step 4: Solve for cc

Using the Law of Sines again: asinA=csinC\frac{a}{\sin A} = \frac{c}{\sin C}

Rearranging for cc: c=asinCsinAc = \frac{a \cdot \sin C}{\sin A}

Substitute the values: c=26sin(107.2)sin(30.2)c = \frac{26 \cdot \sin(107.2^\circ)}{\sin(30.2^\circ)}

First, calculate sin(107.2)\sin(107.2^\circ): sin(107.2)0.973\sin(107.2^\circ) \approx 0.973

Substitute: c=260.9730.50225.2980.50250.4c = \frac{26 \cdot 0.973}{0.502} \approx \frac{25.298}{0.502} \approx 50.4


Final Results:

  • B42.6B \approx 42.6^\circ
  • C107.2C \approx 107.2^\circ
  • c50.4c \approx 50.4

Would you like further clarification or a step-by-step walkthrough? Here are five related questions for further exploration:

  1. How does the Law of Sines help solve oblique triangles?
  2. What happens if sinB\sin B exceeds 1 during calculation?
  3. Can we apply the Law of Sines in right triangles?
  4. How do we determine if there are two possible solutions (ambiguous case)?
  5. What is the relationship between the Law of Sines and the Law of Cosines?

Tip: Always double-check the sum of angles to confirm that it equals 180180^\circ.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Law of Sines
Triangle Properties

Formulas

\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
C = 180^\circ - A - B
c = \frac{a \cdot \sin C}{\sin A}

Theorems

Law of Sines

Suitable Grade Level

Grades 9-12