Math Problem Statement

Soient a et b des nombres réels strictement positifs ; considérons l’équation : 1/x + 1/a + 1/b = 1/(x + a + b). 1) Déterminer l'ensemble de définition de l'équation. 2) Résoudre dans R l’équation.

Solution

The given equation is:

1x+1a+1b=1x+a+b\frac{1}{x} + \frac{1}{a} + \frac{1}{b} = \frac{1}{x + a + b}

Where aa and bb are strictly positive real numbers, and xx is the unknown variable.

1) Déterminer l'ensemble de définition de l'équation (E):

The equation involves rational terms, so we need to determine when the denominators are non-zero:

  • x0x \neq 0 to avoid division by zero in 1x\frac{1}{x}.
  • x+a+b0x + a + b \neq 0 to avoid division by zero on the right-hand side.

Since aa and bb are strictly positive, a+b>0a + b > 0. Hence, x+a+b0x + a + b \neq 0 is equivalent to x(a+b)x \neq -(a + b).

Thus, the domain of definition is:

D=R{0,(a+b)}D = \mathbb{R} \setminus \{0, -(a + b)\}

2) Résoudre dans R\mathbb{R} l'équation (E):

We will solve the equation step by step:

1x+1a+1b=1x+a+b\frac{1}{x} + \frac{1}{a} + \frac{1}{b} = \frac{1}{x + a + b}

First, combine the terms on the left-hand side:

1x+1a+1b=ab+bx+axxab=ab+bx+axxab\frac{1}{x} + \frac{1}{a} + \frac{1}{b} = \frac{ab + bx + ax}{x \cdot a \cdot b} = \frac{ab + bx + ax}{xab}

So the equation becomes:

ab+bx+axxab=1x+a+b\frac{ab + bx + ax}{xab} = \frac{1}{x + a + b}

Cross-multiply:

(ab+bx+ax)(x+a+b)=xab(ab + bx + ax)(x + a + b) = xab

Now, expand both sides:

ab(x+a+b)+bx(x+a+b)+ax(x+a+b)=xabab(x + a + b) + bx(x + a + b) + ax(x + a + b) = xab

Simplify each term:

  • ab(x+a+b)=abx+a2b+ab2ab(x + a + b) = abx + a^2b + ab^2
  • bx(x+a+b)=bx2+abx+b2xbx(x + a + b) = bx^2 + abx + b^2x
  • ax(x+a+b)=ax2+a2x+abxax(x + a + b) = ax^2 + a^2x + abx

So the expanded form is:

abx+a2b+ab2+bx2+abx+b2x+ax2+a2x+abx=xababx + a^2b + ab^2 + bx^2 + abx + b^2x + ax^2 + a^2x + abx = xab

Combine like terms:

bx2+ax2+abx+abx+abx+abx+ab2+a2x+ab2=xabbx^2 + ax^2 + abx + abx + abx + abx + ab^2 + a^2x + ab^2 = xab

Now solve for xx.

Would you like further steps or a breakdown?

Here are five relative questions:

  1. How does one typically solve rational equations like this one?
  2. What are the implications of having multiple unknowns in similar equations?
  3. Can this equation have multiple solutions, or is it unique?
  4. What happens if aa or bb approaches infinity?
  5. Are there any shortcuts or specific methods for dealing with cross-multiplying in rational equations?

Tip: Always ensure that the domain of the equation is checked before proceeding with the solution, especially with rational functions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Rational Equations
Domain of Definition
Equation Solving

Formulas

1/x + 1/a + 1/b = 1/(x + a + b)
Cross-multiplication
Expansion of terms

Theorems

Domain of rational functions
Cross-multiplication technique

Suitable Grade Level

Grades 10-12