Math Problem Statement

Tentukan nilai dari limit berikut: 1. \( \lim_{{x \to 4}} \frac{{2x - 8}}{{\sqrt{x} - 2}} \) 2. \( \lim_{{x \to 2}} \frac{{x^2 + 2x - 8}}{{x - 2}} \)

Solution

Let's solve each limit problem provided in the image.

Problem (a)

limx42x8x2\lim_{{x \to 4}} \frac{{2x - 8}}{{\sqrt{x} - 2}}

Solution:

  1. Substitute x=4x = 4: 2(4)842=8822=00\frac{{2(4) - 8}}{{\sqrt{4} - 2}} = \frac{{8 - 8}}{{2 - 2}} = \frac{0}{0} This is an indeterminate form, so we need to simplify further.

  2. Rewrite 2x82x - 8 as 2(x4)2(x - 4): limx42(x4)x2\lim_{{x \to 4}} \frac{{2(x - 4)}}{{\sqrt{x} - 2}}

  3. Now, use the conjugate to simplify the denominator. Multiply the numerator and the denominator by x+2\sqrt{x} + 2: limx42(x4)(x+2)(x2)(x+2)\lim_{{x \to 4}} \frac{{2(x - 4)(\sqrt{x} + 2)}}{{(\sqrt{x} - 2)(\sqrt{x} + 2)}}

  4. The denominator becomes a difference of squares: limx42(x4)(x+2)x4\lim_{{x \to 4}} \frac{{2(x - 4)(\sqrt{x} + 2)}}{{x - 4}}

  5. Now, cancel x4x - 4 from the numerator and the denominator: limx42(x+2)\lim_{{x \to 4}} 2(\sqrt{x} + 2)

  6. Substitute x=4x = 4: 2(4+2)=2(2+2)=2×4=82(\sqrt{4} + 2) = 2(2 + 2) = 2 \times 4 = 8

So, the answer for part (a) is: limx42x8x2=8\lim_{{x \to 4}} \frac{{2x - 8}}{{\sqrt{x} - 2}} = 8


Problem (b)

limx2x2+2x8x2\lim_{{x \to 2}} \frac{{x^2 + 2x - 8}}{{x - 2}}

Solution:

  1. Substitute x=2x = 2: 22+2(2)822=4+480=00\frac{{2^2 + 2(2) - 8}}{{2 - 2}} = \frac{{4 + 4 - 8}}{{0}} = \frac{0}{0} This is an indeterminate form, so we need to simplify further.

  2. Factor the numerator x2+2x8x^2 + 2x - 8: x2+2x8=(x2)(x+4)x^2 + 2x - 8 = (x - 2)(x + 4)

  3. Rewrite the limit: limx2(x2)(x+4)x2\lim_{{x \to 2}} \frac{{(x - 2)(x + 4)}}{{x - 2}}

  4. Cancel x2x - 2 from the numerator and the denominator: limx2(x+4)\lim_{{x \to 2}} (x + 4)

  5. Substitute x=2x = 2: 2+4=62 + 4 = 6

So, the answer for part (b) is: limx2x2+2x8x2=6\lim_{{x \to 2}} \frac{{x^2 + 2x - 8}}{{x - 2}} = 6


Summary

  • (a) limx42x8x2=8\lim_{{x \to 4}} \frac{{2x - 8}}{{\sqrt{x} - 2}} = 8
  • (b) limx2x2+2x8x2=6\lim_{{x \to 2}} \frac{{x^2 + 2x - 8}}{{x - 2}} = 6

Would you like further details or have any questions?


Related Questions

  1. How do we handle indeterminate forms in limits?
  2. What are some common methods for simplifying limits?
  3. When should we use conjugates in limit problems?
  4. Can you provide examples of limits involving radicals?
  5. How can factoring help in solving limit problems?

Tip

When solving limits that result in 00\frac{0}{0}, consider factoring, using conjugates, or applying L'Hôpital's Rule if applicable.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Algebraic Simplification
Indeterminate Forms

Formulas

Limit properties
Difference of squares
Factoring quadratic equations

Theorems

Limit theorems
Difference of squares identity

Suitable Grade Level

Grades 10-12