Math Problem Statement

Evaluate the following limits: (a) lim(x→2) (x - 2)/(x² - 4) (b) lim(x→1) (x² - 1)/(x - 1) (c) lim(x→0) (x² + x)/x (d) lim(x→3) (x² - 9)/(x - 3) (e) lim(x→1) (x³ - 1)/(x - 1) (f) lim(x→-1) (x² - 1)/(x + 1) (g) lim(x→0) (sqrt(x + 4) - 2)/x

Solution

The image contains several mathematical problems that involve evaluating the limits of functions as the variable xx approaches a certain value. These are common exercises in calculus. Below is the detailed step-by-step solution for each problem:

a) limx2x2x24\lim_{x \to 2} \frac{x - 2}{x^2 - 4}

To solve this limit, observe that the denominator can be factored: x24=(x2)(x+2)x^2 - 4 = (x - 2)(x + 2) Thus, the expression becomes: limx2x2(x2)(x+2)\lim_{x \to 2} \frac{x - 2}{(x - 2)(x + 2)} We can cancel the x2x - 2 term in the numerator and denominator: limx21x+2=12+2=14\lim_{x \to 2} \frac{1}{x + 2} = \frac{1}{2 + 2} = \frac{1}{4} So the answer is 14\frac{1}{4}.

b) limx1x21x1\lim_{x \to 1} \frac{x^2 - 1}{x - 1}

Notice that the numerator can be factored: x21=(x1)(x+1)x^2 - 1 = (x - 1)(x + 1) Thus, the expression becomes: limx1(x1)(x+1)x1\lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} Cancel the x1x - 1 term: limx1(x+1)=1+1=2\lim_{x \to 1} (x + 1) = 1 + 1 = 2 So the answer is 22.

c) limx0x2+xx\lim_{x \to 0} \frac{x^2 + x}{x}

Simplify the expression by factoring the numerator: x2+xx=x+1\frac{x^2 + x}{x} = x + 1 Now, compute the limit: limx0(x+1)=0+1=1\lim_{x \to 0} (x + 1) = 0 + 1 = 1 So the answer is 11.

d) limx3x29x3\lim_{x \to 3} \frac{x^2 - 9}{x - 3}

Factor the numerator: x29=(x3)(x+3)x^2 - 9 = (x - 3)(x + 3) Now the expression becomes: limx3(x3)(x+3)x3\lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3} Cancel the x3x - 3 term: limx3(x+3)=3+3=6\lim_{x \to 3} (x + 3) = 3 + 3 = 6 So the answer is 66.

e) limx1x31x1\lim_{x \to 1} \frac{x^3 - 1}{x - 1}

Factor the numerator using the difference of cubes: x31=(x1)(x2+x+1)x^3 - 1 = (x - 1)(x^2 + x + 1) Now the expression becomes: limx1(x1)(x2+x+1)x1\lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{x - 1} Cancel the x1x - 1 term: limx1(x2+x+1)=12+1+1=3\lim_{x \to 1} (x^2 + x + 1) = 1^2 + 1 + 1 = 3 So the answer is 33.

f) limx1x21x+1\lim_{x \to -1} \frac{x^2 - 1}{x + 1}

Factor the numerator: x21=(x1)(x+1)x^2 - 1 = (x - 1)(x + 1) Now the expression becomes: limx1(x1)(x+1)x+1\lim_{x \to -1} \frac{(x - 1)(x + 1)}{x + 1} Cancel the x+1x + 1 term: limx1(x1)=11=2\lim_{x \to -1} (x - 1) = -1 - 1 = -2 So the answer is 2-2.

g) limx0x+42x\lim_{x \to 0} \frac{\sqrt{x + 4} - 2}{x}

This is a tricky limit that requires multiplying by the conjugate: limx0x+42xx+4+2x+4+2=limx0(x+4)4x(x+4+2)=limx0xx(x+4+2)=limx01x+4+2\lim_{x \to 0} \frac{\sqrt{x + 4} - 2}{x} \cdot \frac{\sqrt{x + 4} + 2}{\sqrt{x + 4} + 2} = \lim_{x \to 0} \frac{(x + 4) - 4}{x(\sqrt{x + 4} + 2)} = \lim_{x \to 0} \frac{x}{x(\sqrt{x + 4} + 2)} = \lim_{x \to 0} \frac{1}{\sqrt{x + 4} + 2} Now, evaluate the limit: limx010+4+2=12+2=14\lim_{x \to 0} \frac{1}{\sqrt{0 + 4} + 2} = \frac{1}{2 + 2} = \frac{1}{4} So the answer is 14\frac{1}{4}.


Would you like more details on any of these steps or have any further questions?

Here are 5 related questions for practice:

  1. Evaluate limx2x2+4x+4x+2\lim_{x \to -2} \frac{x^2 + 4x + 4}{x + 2}.
  2. Solve limx2x25x+6x2\lim_{x \to 2} \frac{x^2 - 5x + 6}{x - 2}.
  3. Compute limx12x2+3x5x1\lim_{x \to 1} \frac{2x^2 + 3x - 5}{x - 1}.
  4. Find limx0x+93x\lim_{x \to 0} \frac{\sqrt{x + 9} - 3}{x}.
  5. Determine limx4x216x4\lim_{x \to 4} \frac{x^2 - 16}{x - 4}.

Tip: Always check if the function can be factored or simplified before substituting the limit value directly. This often resolves indeterminate forms like 00\frac{0}{0}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Algebraic Factoring
Calculus

Formulas

Difference of Squares: a² - b² = (a - b)(a + b)
Difference of Cubes: a³ - b³ = (a - b)(a² + ab + b²)
Limit properties and basic algebra

Theorems

Fundamental Theorem of Limits
Conjugate Method

Suitable Grade Level

Grades 11-12 or College-level Calculus