Math Problem Statement

Calcula los siguientes límites: lim(x→1) (sqrt(x+3)-2)/(x-1) and lim(x→1) (x^3+1)/(x^2-1)

Solution

Let's go through the solutions for each limit step-by-step:

Problem 1:

limx1x+32x1\lim_{{x \to 1}} \frac{\sqrt{x+3} - 2}{x - 1}

  1. Direct Substitution: Substitute x=1x = 1. 1+3211=220=00\frac{\sqrt{1+3} - 2}{1 - 1} = \frac{2 - 2}{0} = \frac{0}{0} This is an indeterminate form, so we need to manipulate the expression.

  2. Multiply by the Conjugate: Multiply the numerator and the denominator by the conjugate of the numerator, x+3+2\sqrt{x+3} + 2. x+32x1x+3+2x+3+2=(x+3)4(x1)(x+3+2)\frac{\sqrt{x+3} - 2}{x - 1} \cdot \frac{\sqrt{x+3} + 2}{\sqrt{x+3} + 2} = \frac{(x+3) - 4}{(x - 1)(\sqrt{x+3} + 2)}

  3. Simplify: The numerator becomes x1x - 1. =x1(x1)(x+3+2)= \frac{x - 1}{(x - 1)(\sqrt{x+3} + 2)}

  4. Cancel x1x - 1 from the numerator and denominator. =1x+3+2= \frac{1}{\sqrt{x+3} + 2}

  5. Substitute x=1x = 1. =11+3+2=12+2=14= \frac{1}{\sqrt{1+3} + 2} = \frac{1}{2 + 2} = \frac{1}{4}

So, the answer for the first limit is: limx1x+32x1=14\lim_{{x \to 1}} \frac{\sqrt{x+3} - 2}{x - 1} = \frac{1}{4}


Problem 2:

limx1x3+1x21\lim_{{x \to 1}} \frac{x^3 + 1}{x^2 - 1}

  1. Direct Substitution: Substitute x=1x = 1. 13+1121=20\frac{1^3 + 1}{1^2 - 1} = \frac{2}{0} This gives an undefined form, so we need to simplify.

  2. Factor the Expressions:

    • For the numerator, x3+1x^3 + 1 is a sum of cubes: x3+1=(x+1)(x2x+1)x^3 + 1 = (x + 1)(x^2 - x + 1).
    • For the denominator, x21x^2 - 1 is a difference of squares: x21=(x+1)(x1)x^2 - 1 = (x + 1)(x - 1).

    So we can rewrite the expression as: (x+1)(x2x+1)(x+1)(x1)\frac{(x + 1)(x^2 - x + 1)}{(x + 1)(x - 1)}

  3. Cancel x+1x + 1 from the numerator and denominator. =x2x+1x1= \frac{x^2 - x + 1}{x - 1}

  4. Substitute x=1x = 1.

    • We still have a 00\frac{0}{0} form.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Indeterminate Forms
Conjugates
Factoring

Formulas

lim(x→c) (f(x)/g(x))
(a^2 - b^2) = (a - b)(a + b)
sum of cubes: x^3 + y^3 = (x + y)(x^2 - xy + y^2)

Theorems

L'Hospital's Rule (implied by indeterminate forms)
Limit laws

Suitable Grade Level

Grades 11-12