Math Problem Statement

Solve the following integral by beta function: Integral from 0 to 3 (x^3/2)/√3-x dx Integral from 0 to 1 (dx)/√1-x^1/4)

Solution

To solve this problem, we need to split the integrals and evaluate each one using the Beta function.

Problem Statement

Given integrals:

  1. 03x3/23xdx\int_{0}^{3} \frac{x^{3/2}}{\sqrt{3 - x}} \, dx
  2. 0111x1/4dx\int_{0}^{1} \frac{1}{\sqrt{1 - x^{1/4}}} \, dx

The Beta function can be represented as: B(x,y)=01tx1(1t)y1dtB(x, y) = \int_{0}^{1} t^{x-1} (1 - t)^{y-1} \, dt We will try to manipulate each integral into this form.


1. First Integral

03x3/23xdx\int_{0}^{3} \frac{x^{3/2}}{\sqrt{3 - x}} \, dx

To use the Beta function, we can substitute x=3ux = 3u, so that dx=3dudx = 3 \, du and the limits change from x=0x = 0 to x=3x = 3, which gives u=0u = 0 to u=1u = 1. Substituting these, we get: 01(3u)3/233u3du\int_{0}^{1} \frac{(3u)^{3/2}}{\sqrt{3 - 3u}} \cdot 3 \, du Simplifying: =35/201u3/2(1u)1/2du= 3^{5/2} \int_{0}^{1} u^{3/2} (1 - u)^{-1/2} \, du This is now in the form of a Beta function: 35/2B(52,12)3^{5/2} \cdot B\left( \frac{5}{2}, \frac{1}{2} \right)

Using the property of the Beta function in terms of Gamma functions, we have: B(52,12)=Γ(52)Γ(12)Γ(3)B\left( \frac{5}{2}, \frac{1}{2} \right) = \frac{\Gamma\left( \frac{5}{2} \right) \Gamma\left( \frac{1}{2} \right)}{\Gamma\left( 3 \right)}

Now, we calculate:

  • Γ(52)=3π4\Gamma\left( \frac{5}{2} \right) = \frac{3\sqrt{\pi}}{4}
  • Γ(12)=π\Gamma\left( \frac{1}{2} \right) = \sqrt{\pi}
  • Γ(3)=2\Gamma(3) = 2

Thus: B(52,12)=3π4π2=3π8B\left( \frac{5}{2}, \frac{1}{2} \right) = \frac{\frac{3\sqrt{\pi}}{4} \cdot \sqrt{\pi}}{2} = \frac{3\pi}{8}

Therefore, the first integral becomes: 35/23π8=243π83^{5/2} \cdot \frac{3\pi}{8} = \frac{243\pi}{8}


2. Second Integral

0111x1/4dx\int_{0}^{1} \frac{1}{\sqrt{1 - x^{1/4}}} \, dx

Let x=t4x = t^4, so dx=4t3dtdx = 4t^3 \, dt. The limits change as follows:

  • When x=0x = 0, t=0t = 0
  • When x=1x = 1, t=1t = 1

Substituting into the integral, we get: 0111t4t3dt=401t3(1t)1/2dt\int_{0}^{1} \frac{1}{\sqrt{1 - t}} \cdot 4t^3 \, dt = 4 \int_{0}^{1} t^3 (1 - t)^{-1/2} \, dt This is now in the form of a Beta function: 4B(4,12)4 \cdot B\left( 4, \frac{1}{2} \right)

Using the Beta function in terms of Gamma functions, we have: B(4,12)=Γ(4)Γ(12)Γ(92)B\left( 4, \frac{1}{2} \right) = \frac{\Gamma(4) \Gamma\left( \frac{1}{2} \right)}{\Gamma\left( \frac{9}{2} \right)}

Now, we calculate:

  • Γ(4)=6\Gamma(4) = 6
  • Γ(12)=π\Gamma\left( \frac{1}{2} \right) = \sqrt{\pi}
  • Γ(92)=105π16\Gamma\left( \frac{9}{2} \right) = \frac{105 \sqrt{\pi}}{16}

Thus: B(4,12)=6π105π16=96105=3235B\left( 4, \frac{1}{2} \right) = \frac{6 \cdot \sqrt{\pi}}{\frac{105 \sqrt{\pi}}{16}} = \frac{96}{105} = \frac{32}{35}

Therefore, the second integral becomes: 43235=128354 \cdot \frac{32}{35} = \frac{128}{35}


Final Answer

The value of the two integrals are:

  1. 03x3/23xdx=243π8\int_{0}^{3} \frac{x^{3/2}}{\sqrt{3 - x}} \, dx = \frac{243\pi}{8}
  2. 0111x1/4dx=12835\int_{0}^{1} \frac{1}{\sqrt{1 - x^{1/4}}} \, dx = \frac{128}{35}

Would you like further clarification on any part? Here are some follow-up questions to extend your understanding:

  1. How does the Beta function relate to the Gamma function in integration problems?
  2. Can we solve similar integrals using the Beta function directly, or are substitutions always required?
  3. What are some practical applications of the Beta and Gamma functions in probability and statistics?
  4. How do properties of the Beta function simplify integrals with certain forms?
  5. How would changing the limits of integration affect the steps to solve these integrals?

Tip: When tackling integrals that resemble the Beta or Gamma function form, look for substitutions to simplify them into known Beta function formats.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Beta Function
Gamma Function
Integration
Substitution in Integrals

Formulas

Beta Function: B(x, y) = ∫(0 to 1) t^(x-1) (1 - t)^(y-1) dt
Gamma Function: Γ(x) = ∫(0 to ∞) t^(x-1) e^(-t) dt

Theorems

Beta-Gamma Relationship
Substitution Method in Integration

Suitable Grade Level

College/University