Math Problem Statement

Evaluate using beta and gamma functions

Solution

To evaluate the integral I=01dx1x4I = \int_0^1 \frac{dx}{\sqrt{1 - x^4}} we can use the Beta function, which is related to the Gamma function.

The Beta function B(x,y)B(x,y) is defined as: B(x,y)=01tx1(1t)y1dtB(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} \, dt

We will rewrite the given integral in a form that can be expressed using the Beta function. First, let's make a substitution: x4=tx^4 = t 4x3dx=dt4x^3 \, dx = dt dx=dt4x3=dt4t3/4dx = \frac{dt}{4x^3} = \frac{dt}{4t^{3/4}}

Next, adjust the limits of integration according to the substitution:

  • When x=0x = 0, t=0t = 0.
  • When x=1x = 1, t=1t = 1.

Substituting these into the integral, we get: I=0111tdt4t3/4=1401t3/41tdtI = \int_0^1 \frac{1}{\sqrt{1 - t}} \cdot \frac{dt}{4t^{3/4}} = \frac{1}{4} \int_0^1 \frac{t^{-3/4}}{\sqrt{1 - t}} \, dt

This integral can be recognized as a Beta function: 1401t3/4(1t)1/2dt=14B(14,12)\frac{1}{4} \int_0^1 t^{-3/4} (1-t)^{-1/2} \, dt = \frac{1}{4} B\left(\frac{1}{4}, \frac{1}{2}\right)

The Beta function can be related to the Gamma function: B(x,y)=Γ(x)Γ(y)Γ(x+y)B(x,y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}

Therefore: B(14,12)=Γ(14)Γ(12)Γ(14+12)=Γ(14)Γ(12)Γ(34)B\left(\frac{1}{4}, \frac{1}{2}\right) = \frac{\Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{4} + \frac{1}{2}\right)} = \frac{\Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{3}{4}\right)}

We know that Γ(12)=π\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} and use the reflection formula for the Gamma function: Γ(x)Γ(1x)=πsin(πx)\Gamma(x) \Gamma(1-x) = \frac{\pi}{\sin(\pi x)} So: Γ(14)Γ(34)=πsin(3π4)=π22=π2\Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right) = \frac{\pi}{\sin\left(\frac{3\pi}{4}\right)} = \frac{\pi}{\frac{\sqrt{2}}{2}} = \pi \sqrt{2} Thus: Γ(34)=π2Γ(14)\Gamma\left(\frac{3}{4}\right) = \frac{\pi \sqrt{2}}{\Gamma\left(\frac{1}{4}\right)}

Plugging this into the Beta function expression: B(14,12)=Γ(14)ππ2Γ(14)=Γ(14)2ππ2B\left(\frac{1}{4}, \frac{1}{2}\right) = \frac{\Gamma\left(\frac{1}{4}\right) \sqrt{\pi}}{\frac{\pi \sqrt{2}}{\Gamma\left(\frac{1}{4}\right)}} = \frac{\Gamma\left(\frac{1}{4}\right)^2 \sqrt{\pi}}{\pi \sqrt{2}}

Finally: I=14B(14,12)=14Γ(14)2ππ2I = \frac{1}{4} B\left(\frac{1}{4}, \frac{1}{2}\right) = \frac{1}{4} \cdot \frac{\Gamma\left(\frac{1}{4}\right)^2 \sqrt{\pi}}{\pi \sqrt{2}}

Simplifying this: I=Γ(14)2π4π2I = \frac{\Gamma\left(\frac{1}{4}\right)^2 \sqrt{\pi}}{4 \pi \sqrt{2}}

Hence: I=Γ(14)2π4π2I = \frac{\Gamma\left(\frac{1}{4}\right)^2 \sqrt{\pi}}{4 \pi \sqrt{2}}

Would you like to go through any of the details or have any questions on this?

Here are five questions you might ask:

  1. How do the Gamma and Beta functions relate to each other?
  2. What is the reflection formula for the Gamma function?
  3. How can we simplify expressions involving Gamma functions?
  4. Can you explain the substitution method used in solving integrals?
  5. What are some applications of the Gamma and Beta functions in mathematics?

Tip: When dealing with integrals, transforming the integral into a known form using substitutions can simplify the evaluation process significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Beta Function
Gamma Function
Integral Calculus

Formulas

Beta function definition
Gamma function reflection formula

Theorems

Relationship between Beta and Gamma functions

Suitable Grade Level

Advanced undergraduate