Math Problem Statement

1. Evaluate: (-4)^-3 2. Simplify: (3^-7 × 3^-9) × 3^-4 3. Find the value of (3^7 + 4^-3 + 5^3)^0 4. Evaluate: [(1/2)^-1 + (1/3)^-1]^-1 5. Express 31860000000 in standard form. 6. Find x so that (-5)^(x+1) × (-5)^5 = (-5)^7 7. Solve the following: (81)^-4 ÷ (729)^(2-x) = 9^(4x)

Solution

Let's go through the questions step by step and solve them.


1. Evaluate: (-4)^(-3)

Using the formula for negative exponents:
an=1ana^{-n} = \frac{1}{a^n}
(4)3=1(4)3=164=164(-4)^{-3} = \frac{1}{(-4)^3} = \frac{1}{-64} = -\frac{1}{64}


2. Simplify: (3739)34(3^{-7} \cdot 3^{-9}) \cdot 3^{-4}

Using the property of exponents aman=am+na^m \cdot a^n = a^{m+n}:
373934=3794=3203^{-7} \cdot 3^{-9} \cdot 3^{-4} = 3^{-7-9-4} = 3^{-20}
The final answer is:
320\boxed{3^{-20}}


3. Find the value of (37+43+53)0(3^7 + 4^{-3} + 5^3)^0

Anything raised to the power 0 equals 1, as long as the base is not undefined:
(37+43+53)0=1(3^7 + 4^{-3} + 5^3)^0 = 1


4. Evaluate: [(12)1+(13)1]1\left[ \left( \frac{1}{2} \right)^{-1} + \left( \frac{1}{3} \right)^{-1} \right]^{-1}

First, calculate the individual terms:
(12)1=2,(13)1=3\left( \frac{1}{2} \right)^{-1} = 2, \quad \left( \frac{1}{3} \right)^{-1} = 3
Now add them:
2+3=52 + 3 = 5
Finally, take the reciprocal:
51=155^{-1} = \frac{1}{5}

The answer is:
15\boxed{\frac{1}{5}}


5. Express 31860000000 in standard form.

Count the number of digits after the first digit (3):
31860000000=3.186×101031860000000 = 3.186 \times 10^{10}


6. Find xx such that (5)x+1×(5)5=(5)7(-5)^{x+1} \times (-5)^5 = (-5)^7

Using the property of exponents aman=am+na^m \cdot a^n = a^{m+n}:
(5)x+1(5)5=(5)x+1+5(-5)^{x+1} \cdot (-5)^5 = (-5)^{x+1+5}
Equating to the right-hand side:
x+1+5=7x+1+5 = 7
Solve for xx:
x=76=1x = 7 - 6 = 1


7. Solve (81)4÷(729)2x=94x(81)^{-4} \div (729)^{2-x} = 9^{4x}

Step 1: Express 81 and 729 as powers of 9:
81=92,729=9381 = 9^2, \quad 729 = 9^3
Substitute these into the equation:
(92)4÷(93)2x=94x(9^2)^{-4} \div (9^3)^{2-x} = 9^{4x}
Simplify exponents:
98÷93(2x)=94x9^{-8} \div 9^{3(2-x)} = 9^{4x}
Use the rule aman=amn\frac{a^m}{a^n} = a^{m-n}:
983(2x)=94x9^{-8 - 3(2-x)} = 9^{4x}
Simplify the exponent:
86+3x=4x-8 - 6 + 3x = 4x
Solve for xx:
14+3x=4x-14 + 3x = 4x
x=14x = -14


Final Answers:

  1. 164-\frac{1}{64}
  2. 3203^{-20}
  3. 11
  4. 15\frac{1}{5}
  5. 3.186×10103.186 \times 10^{10}
  6. x=1x = 1
  7. x=14x = -14

Let me know if you'd like a detailed explanation of any step!

5 Related Questions:

  1. How do you simplify expressions with negative exponents?
  2. What is the significance of standard form in mathematics?
  3. How do you solve equations involving fractional exponents?
  4. Can you explain when (a+b)0(a+b)^0 becomes undefined?
  5. How do you convert large numbers into scientific notation?

Tip:

When dealing with exponents, always remember the basic laws of exponents (aman=am+na^m \cdot a^n = a^{m+n}, (am)n=amn(a^m)^n = a^{m \cdot n}, etc.) to simplify efficiently!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Negative Exponents
Scientific Notation
Exponent Rules
Equation Solving
Simplification

Formulas

a^(-n) = 1 / a^n
a^m × a^n = a^(m+n)
(a^m)^n = a^(m*n)
(a / b)^n = a^n / b^n

Theorems

Exponentiation Properties
Basic Laws of Exponents

Suitable Grade Level

Grades 9-12