Math Problem Statement

Exercise 4: 1. Simplify A = 5^(-3) × (-10)^2 × 2^(-3) and B = ((-3)^2)^4 × √81 × 1/2^7. 2. Let a and b be two non-zero real numbers: Simplify C = ((a^(-3) × b)^5 × (a^2)^(-9)) / ((a^3 × b^(-1))^4 × b^18). a. Simplify C. b. For a = 10^(-3) and b = 2 × 10^(-2), provide the scientific notation of C.

Solution

Let's solve this exercise step by step. Here's a breakdown of each part.

Exercise 4

1. Simplify AA and BB:

  • Given:
    • A=53×(10)2×23A = 5^{-3} \times (-10)^2 \times 2^{-3}
    • B=((3)2)4×81×127B = ((-3)^2)^4 \times \sqrt{81} \times \frac{1}{2^7}
Solution for AA:
  1. 53=153=11255^{-3} = \frac{1}{5^3} = \frac{1}{125}.

  2. (10)2=100(-10)^2 = 100.

  3. 23=123=182^{-3} = \frac{1}{2^3} = \frac{1}{8}.

    Therefore, A=1125×100×18=1001000=110=0.1A = \frac{1}{125} \times 100 \times \frac{1}{8} = \frac{100}{1000} = \frac{1}{10} = 0.1

Solution for BB:
  1. (3)2=9(-3)^2 = 9, so ((3)2)4=94=6561((-3)^2)^4 = 9^4 = 6561.

  2. 81=9\sqrt{81} = 9.

  3. 127=1128\frac{1}{2^7} = \frac{1}{128}.

    Therefore, B=6561×9×1128=59049128B = 6561 \times 9 \times \frac{1}{128} = \frac{59049}{128}

2. Given non-zero real numbers aa and bb:

Expression: C=(a3×b)5×(a2)9(a3×b1)4×b18C = \frac{(a^{-3} \times b)^5 \times (a^2)^{-9}}{(a^3 \times b^{-1})^4 \times b^{18}}

Part (a): Simplify CC

Let's simplify each part in the expression for CC:

  1. Numerator: (a3×b)5×(a2)9(a^{-3} \times b)^5 \times (a^2)^{-9}

    • (a3×b)5=a15×b5(a^{-3} \times b)^5 = a^{-15} \times b^5
    • (a2)9=a18(a^2)^{-9} = a^{-18}

    So, the numerator becomes: a15×b5×a18=a33×b5a^{-15} \times b^5 \times a^{-18} = a^{-33} \times b^5

  2. Denominator: (a3×b1)4×b18(a^3 \times b^{-1})^4 \times b^{18}

    • (a3×b1)4=a12×b4(a^3 \times b^{-1})^4 = a^{12} \times b^{-4}

    So, the denominator becomes: a12×b4×b18=a12×b14a^{12} \times b^{-4} \times b^{18} = a^{12} \times b^{14}

  3. Combine the numerator and denominator: C=a33×b5a12×b14=a3312×b514=a45×b9=1a45b9C = \frac{a^{-33} \times b^5}{a^{12} \times b^{14}} = a^{-33 - 12} \times b^{5 - 14} = a^{-45} \times b^{-9} = \frac{1}{a^{45} b^9}

    Thus, the simplified form of CC is: C=1a45b9C = \frac{1}{a^{45} b^9}

Part (b): For a=103a = 10^{-3} and b=2×102b = 2 \times 10^{-2}, find the scientific notation of CC.
  1. Substitute a=103a = 10^{-3} and b=2×102b = 2 \times 10^{-2} into CC: C=1(103)45×(2×102)9C = \frac{1}{(10^{-3})^{45} \times (2 \times 10^{-2})^9}

  2. Calculate each part:

    • (103)45=10135(10^{-3})^{45} = 10^{-135}
    • (2×102)9=29×(102)9=512×1018=5.12×1016(2 \times 10^{-2})^9 = 2^9 \times (10^{-2})^9 = 512 \times 10^{-18} = 5.12 \times 10^{-16}

    So, C=110135×5.12×1016=15.12×10151=15.12×101510.1953×10151=1.953×10150C = \frac{1}{10^{-135} \times 5.12 \times 10^{-16}} = \frac{1}{5.12 \times 10^{-151}} = \frac{1}{5.12} \times 10^{151} \approx 0.1953 \times 10^{151} = 1.953 \times 10^{150}


Would you like further details or have any questions?

Related Questions

  1. What are the properties of exponents used in these simplifications?
  2. How does scientific notation simplify handling extremely large or small numbers?
  3. What is the general formula for simplifying expressions with negative exponents?
  4. How can these simplifications be applied to real-world problems?
  5. What are some common mistakes to avoid when simplifying expressions with multiple exponents?

Tip

When simplifying expressions with multiple terms in both the numerator and denominator, tackle each component separately, then combine them at the end for clarity.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Simplification
Scientific Notation

Formulas

Exponent rules: (a^m)^n = a^(m*n), a^m × a^n = a^(m+n)
Scientific notation

Theorems

Exponent laws

Suitable Grade Level

Grades 10-12