Math Problem Statement

lim(x→0) ((a^(x+1) - b^(x+1) - c^(x+1)) / (a + b + c)) * (1/x)

Solution

Let's analyze and solve the given mathematical expression.

Problem Statement:

The given expression is: limx0(ax+1bx+1cx+1a+b+c1x).\lim_{x \to 0} \left( \frac{a^{x+1} - b^{x+1} - c^{x+1}}{a + b + c} \cdot \frac{1}{x} \right).

Solution:

Step 1: Simplify ax+1,bx+1,cx+1a^{x+1}, b^{x+1}, c^{x+1}

Using the property of exponents, ax+1=aaxa^{x+1} = a \cdot a^x, bx+1=bbxb^{x+1} = b \cdot b^x, and cx+1=ccxc^{x+1} = c \cdot c^x. For small values of xx, ax1+xlnaa^x \approx 1 + x \ln a (first-order Taylor expansion).

Thus: ax+1a(1+xlna)=a+axlna,a^{x+1} \approx a(1 + x \ln a) = a + ax \ln a, bx+1b(1+xlnb)=b+bxlnb,b^{x+1} \approx b(1 + x \ln b) = b + bx \ln b, cx+1c(1+xlnc)=c+cxlnc.c^{x+1} \approx c(1 + x \ln c) = c + cx \ln c.

Step 2: Substitute these expansions into the numerator

The numerator is: ax+1bx+1cx+1.a^{x+1} - b^{x+1} - c^{x+1}.

Substituting the expansions: ax+1bx+1cx+1(a+axlna)(b+bxlnb)(c+cxlnc).a^{x+1} - b^{x+1} - c^{x+1} \approx (a + ax \ln a) - (b + bx \ln b) - (c + cx \ln c).

Simplify: ax+1bx+1cx+1(abc)+x(alnablnbclnc).a^{x+1} - b^{x+1} - c^{x+1} \approx (a - b - c) + x(a \ln a - b \ln b - c \ln c).

Step 3: Simplify the fraction

The fraction becomes: ax+1bx+1cx+1a+b+c(abc)+x(alnablnbclnc)a+b+c.\frac{a^{x+1} - b^{x+1} - c^{x+1}}{a + b + c} \approx \frac{(a - b - c) + x(a \ln a - b \ln b - c \ln c)}{a + b + c}.

Split into two terms: ax+1bx+1cx+1a+b+cabca+b+c+xalnablnbclnca+b+c.\frac{a^{x+1} - b^{x+1} - c^{x+1}}{a + b + c} \approx \frac{a - b - c}{a + b + c} + x \cdot \frac{a \ln a - b \ln b - c \ln c}{a + b + c}.

Step 4: Multiply by 1x\frac{1}{x}

The entire expression is: 1xax+1bx+1cx+1a+b+c.\frac{1}{x} \cdot \frac{a^{x+1} - b^{x+1} - c^{x+1}}{a + b + c}.

Substituting: 1x(abca+b+c+xalnablnbclnca+b+c).\frac{1}{x} \cdot \left( \frac{a - b - c}{a + b + c} + x \cdot \frac{a \ln a - b \ln b - c \ln c}{a + b + c} \right).

Simplify: 1xabca+b+c+alnablnbclnca+b+c.\frac{1}{x} \cdot \frac{a - b - c}{a + b + c} + \frac{a \ln a - b \ln b - c \ln c}{a + b + c}.

As x0x \to 0, the term 1xabca+b+c\frac{1}{x} \cdot \frac{a - b - c}{a + b + c} diverges unless a=b+ca = b + c. Assuming a=b+ca = b + c, the first term vanishes, leaving: limx0(1xabca+b+c+alnablnbclnca+b+c)=alnablnbclnca+b+c.\lim_{x \to 0} \left( \frac{1}{x} \cdot \frac{a - b - c}{a + b + c} + \frac{a \ln a - b \ln b - c \ln c}{a + b + c} \right) = \frac{a \ln a - b \ln b - c \ln c}{a + b + c}.

Final Answer:

limx0(ax+1bx+1cx+1a+b+c1x)=alnablnbclnca+b+c.\lim_{x \to 0} \left( \frac{a^{x+1} - b^{x+1} - c^{x+1}}{a + b + c} \cdot \frac{1}{x} \right) = \frac{a \ln a - b \ln b - c \ln c}{a + b + c}.

Would you like more details or explanations about specific steps?

5 Related Questions:

  1. How is the Taylor expansion of axa^x derived for small xx?
  2. What happens if ab+ca \neq b + c in this problem?
  3. How can L'Hôpital's Rule be applied to limits involving indeterminate forms like this one?
  4. What are some common uses of logarithmic expansions in calculus?
  5. How can we generalize this result for nn-term expressions?

Tip:

When solving limits with exponential terms, Taylor expansion and logarithmic approximations are invaluable tools for simplification.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Exponential Functions
Logarithmic Approximations
Taylor Expansion

Formulas

a^(x+1) ≈ a(1 + x ln a) for small x (using Taylor expansion)
lim(x→0) f(x) * g(x) = f(0) * lim(x→0) g(x) if f(x) is constant at x=0

Theorems

Taylor Expansion Theorem
Logarithmic Properties

Suitable Grade Level

Grades 11-12 or Undergraduate Level