Math Problem Statement

Misalkan z1 = 3 - i, z2 = 2 - 3i, z3 = -6 + i, dan Z = z2 + (z1 + z3)/(z1 * z3), tentukan E = I * Z bila diketahui I = 2 - 4i.

Solution

We are given complex numbers z1=3iz_1 = 3 - i, z2=23iz_2 = 2 - 3i, and z3=6+iz_3 = -6 + i, with a relation for ZZ expressed as:

Z=z2+z1+z3z1z3Z = z_2 + \frac{z_1 + z_3}{z_1 \cdot z_3}

We need to find E=IZE = I \cdot Z when I=24iI = 2 - 4i.

Step 1: Find z1+z3z_1 + z_3

z1+z3=(3i)+(6+i)=3z_1 + z_3 = (3 - i) + (-6 + i) = -3

Step 2: Find z1z3z_1 \cdot z_3

z1z3=(3i)(6+i)=3(6+i)i(6+i)z_1 \cdot z_3 = (3 - i)(-6 + i) = 3(-6 + i) - i(-6 + i) =18+3i+6i+1=17+9i= -18 + 3i + 6i + 1 = -17 + 9i

Step 3: Calculate z1+z3z1z3\frac{z_1 + z_3}{z_1 \cdot z_3}

317+9i\frac{-3}{-17 + 9i}

To simplify, multiply the numerator and denominator by the conjugate of the denominator: 317+9i179i179i=3(179i)(17)2+(9)2\frac{-3}{-17 + 9i} \cdot \frac{-17 - 9i}{-17 - 9i} = \frac{-3(-17 - 9i)}{(-17)^2 + (9)^2} =51+27i289+81=51+27i370= \frac{51 + 27i}{289 + 81} = \frac{51 + 27i}{370} =51370+27i370= \frac{51}{370} + \frac{27i}{370}

Step 4: Calculate ZZ

Z=z2+z1+z3z1z3Z = z_2 + \frac{z_1 + z_3}{z_1 \cdot z_3} Z=(23i)+(51370+27i370)Z = (2 - 3i) + \left( \frac{51}{370} + \frac{27i}{370} \right) =(2+51370)+(3i+27i370)= \left( 2 + \frac{51}{370} \right) + \left( -3i + \frac{27i}{370} \right) =740+51370+i(1110+27370)= \frac{740 + 51}{370} + i\left( \frac{-1110 + 27}{370} \right) =791370+i(1083370)= \frac{791}{370} + i\left( \frac{-1083}{370} \right) Z=2.138+i(2.927)Z = 2.138 + i(-2.927)

Step 5: Find E=IZE = I \cdot Z

We know I=24iI = 2 - 4i, so: E=(24i)(2.1382.927i)E = (2 - 4i)(2.138 - 2.927i) Using distribution: E=2(2.1382.927i)4i(2.1382.927i)E = 2(2.138 - 2.927i) - 4i(2.138 - 2.927i) E=4.2765.854i4i(2.1382.927i)E = 4.276 - 5.854i - 4i(2.138 - 2.927i) =4.2765.854i8.552i+11.708= 4.276 - 5.854i - 8.552i + 11.708 E=(4.276+11.708)+(5.8548.552)iE = (4.276 + 11.708) + (-5.854 - 8.552)i E=15.98414.406iE = 15.984 - 14.406i

Thus, E=15.98414.406iE = 15.984 - 14.406i.


Would you like further details on any step or additional explanation?

Here are 5 related questions for practice:

  1. Calculate z1z2z_1 \cdot z_2 and simplify.
  2. Find Z|Z| (the modulus of ZZ).
  3. What is the argument (angle) of II in polar form?
  4. Express ZZ in polar form.
  5. Calculate EE if I=1+iI = 1 + i.

Tip: When multiplying complex numbers, remember to use the distributive property carefully and combine like terms (real and imaginary parts).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Algebraic Operations

Formulas

Z = z2 + (z1 + z3) / (z1 * z3)
Multiplication of Complex Numbers
Conjugate for Simplifying Complex Division
E = I * Z

Theorems

Distributive Property of Complex Multiplication
Conjugate and Modulus Properties of Complex Numbers

Suitable Grade Level

Grades 11-12