We are given complex numbers z1=3−i, z2=2−3i, and z3=−6+i, with a relation for Z expressed as:
Z=z2+z1⋅z3z1+z3
We need to find E=I⋅Z when I=2−4i.
Step 1: Find z1+z3
z1+z3=(3−i)+(−6+i)=−3
Step 2: Find z1⋅z3
z1⋅z3=(3−i)(−6+i)=3(−6+i)−i(−6+i)
=−18+3i+6i+1=−17+9i
Step 3: Calculate z1⋅z3z1+z3
−17+9i−3
To simplify, multiply the numerator and denominator by the conjugate of the denominator:
−17+9i−3⋅−17−9i−17−9i=(−17)2+(9)2−3(−17−9i)
=289+8151+27i=37051+27i
=37051+37027i
Step 4: Calculate Z
Z=z2+z1⋅z3z1+z3
Z=(2−3i)+(37051+37027i)
=(2+37051)+(−3i+37027i)
=370740+51+i(370−1110+27)
=370791+i(370−1083)
Z=2.138+i(−2.927)
Step 5: Find E=I⋅Z
We know I=2−4i, so:
E=(2−4i)(2.138−2.927i)
Using distribution:
E=2(2.138−2.927i)−4i(2.138−2.927i)
E=4.276−5.854i−4i(2.138−2.927i)
=4.276−5.854i−8.552i+11.708
E=(4.276+11.708)+(−5.854−8.552)i
E=15.984−14.406i
Thus, E=15.984−14.406i.
Would you like further details on any step or additional explanation?
Here are 5 related questions for practice:
- Calculate z1⋅z2 and simplify.
- Find ∣Z∣ (the modulus of Z).
- What is the argument (angle) of I in polar form?
- Express Z in polar form.
- Calculate E if I=1+i.
Tip: When multiplying complex numbers, remember to use the distributive property carefully and combine like terms (real and imaginary parts).