Math Problem Statement

Solve the given equation. (Enter your answers as a comma-separated list. Let k be any integer. Round terms to three decimal places where appropriate. If there is no solution, enter NO SOLUTION.)

csc2(𝜃) = 7 cot(𝜃) + 9

Solution

We are tasked to solve the trigonometric equation:

csc2(θ)=7cot(θ)+9\csc^2(\theta) = 7\cot(\theta) + 9

Step 1: Recall Trigonometric Identities

The cosecant and cotangent functions have the identity: csc2(θ)=1+cot2(θ)\csc^2(\theta) = 1 + \cot^2(\theta)

Substituting this into the equation, we get: 1+cot2(θ)=7cot(θ)+91 + \cot^2(\theta) = 7\cot(\theta) + 9

Step 2: Rearrange the Equation

Rearrange the terms into a standard quadratic form: cot2(θ)7cot(θ)8=0\cot^2(\theta) - 7\cot(\theta) - 8 = 0

Step 3: Solve the Quadratic Equation

Let x=cot(θ)x = \cot(\theta), so the equation becomes: x27x8=0x^2 - 7x - 8 = 0

Solve using the quadratic formula: x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} where a=1a = 1, b=7b = -7, and c=8c = -8. Substituting these values: x=(7)±(7)24(1)(8)2(1)x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(1)(-8)}}{2(1)} x=7±49+322x = \frac{7 \pm \sqrt{49 + 32}}{2} x=7±812x = \frac{7 \pm \sqrt{81}}{2} x=7±92x = \frac{7 \pm 9}{2}

Thus: x=7+92=8orx=792=1x = \frac{7 + 9}{2} = 8 \quad \text{or} \quad x = \frac{7 - 9}{2} = -1

Step 4: Interpret Solutions

Recall that x=cot(θ)x = \cot(\theta), so: cot(θ)=8orcot(θ)=1\cot(\theta) = 8 \quad \text{or} \quad \cot(\theta) = -1

Case 1: cot(θ)=8\cot(\theta) = 8

This implies: θ=cot1(8)\theta = \cot^{-1}(8) Using a calculator: θ0.125radians (principal value).\theta \approx 0.125 \, \text{radians (principal value)}.

Since the cotangent function has a period of π\pi, general solutions are: θ=0.125+kπ,kZ.\theta = 0.125 + k\pi, \quad k \in \mathbb{Z}.

Case 2: cot(θ)=1\cot(\theta) = -1

This implies: θ=cot1(1)\theta = \cot^{-1}(-1) Using a calculator: θ=3π4radians (principal value).\theta = \frac{3\pi}{4} \, \text{radians (principal value)}.

General solutions are: θ=3π4+kπ,kZ.\theta = \frac{3\pi}{4} + k\pi, \quad k \in \mathbb{Z}.

Final Answer:

θ=0.125+kπ,3π4+kπ,kZ.\theta = 0.125 + k\pi, \, \frac{3\pi}{4} + k\pi, \quad k \in \mathbb{Z}.

Let me know if you would like further clarification or detailed explanations!


5 Relative Questions:

  1. How do we handle periodicity in trigonometric functions?
  2. What is the general solution for cot(θ)=x\cot(\theta) = x?
  3. How do trigonometric identities simplify complex equations?
  4. Why does the quadratic formula help in solving trigonometric equations?
  5. How does the unit circle relate to cotangent values?

Tip: Always check the domain restrictions for trigonometric functions (e.g., csc(θ)\csc(\theta) is undefined for θ=nπ\theta = n\pi).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Quadratic Equations
Trigonometric Identities

Formulas

csc^2(θ) = 1 + cot^2(θ)
Quadratic formula: x = (-b ± √(b^2 - 4ac)) / 2a

Theorems

Pythagorean identity for cotangent and cosecant
Solutions for quadratic equations

Suitable Grade Level

Grades 10-12