Math Problem Statement

Solve the given equation. (Enter your answers as a comma-separated list. Let k be any integer. Round terms to three decimal places where appropriate. If there is no solution, enter NO SOLUTION.)

csc2(𝜃) = 7 cot(𝜃) + 9

Solution

To solve the equation:

csc2(θ)=7cot(θ)+9\csc^2(\theta) = 7\cot(\theta) + 9

Step 1: Use trigonometric identities

We know the identity: csc2(θ)=1+cot2(θ)\csc^2(\theta) = 1 + \cot^2(\theta) Substitute this into the equation: 1+cot2(θ)=7cot(θ)+91 + \cot^2(\theta) = 7\cot(\theta) + 9

Step 2: Rearrange into a quadratic equation

cot2(θ)7cot(θ)8=0\cot^2(\theta) - 7\cot(\theta) - 8 = 0

Let x=cot(θ)x = \cot(\theta), then the equation becomes: x27x8=0x^2 - 7x - 8 = 0

Step 3: Solve the quadratic equation

Use the quadratic formula: x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} Here, a=1a = 1, b=7b = -7, and c=8c = -8. Substitute these values: x=(7)±(7)24(1)(8)2(1)x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(1)(-8)}}{2(1)} x=7±49+322x = \frac{7 \pm \sqrt{49 + 32}}{2} x=7±812x = \frac{7 \pm \sqrt{81}}{2} x=7±92x = \frac{7 \pm 9}{2}

So, the two solutions are: x=7+92=8,x=792=1x = \frac{7 + 9}{2} = 8, \quad x = \frac{7 - 9}{2} = -1

Step 4: Back-substitute x=cot(θ)x = \cot(\theta)

  • When cot(θ)=8\cot(\theta) = 8: θ=cot1(8)\theta = \cot^{-1}(8) Using a calculator, this gives: θ=0.124radians+kπ,kZ\theta = 0.124 \, \text{radians} + k\pi, \quad k \in \mathbb{Z}

  • When cot(θ)=1\cot(\theta) = -1: θ=cot1(1)\theta = \cot^{-1}(-1) Using a calculator, this gives: θ=2.356radians+kπ,kZ\theta = 2.356 \, \text{radians} + k\pi, \quad k \in \mathbb{Z}

Final Answer:

θ=0.124+kπ,2.356+kπwhere kZ.\theta = 0.124 + k\pi, \, 2.356 + k\pi \quad \text{where } k \in \mathbb{Z}.

Would you like further details or have any questions?


Related Questions:

  1. What is the general solution for cot(θ)=c\cot(\theta) = c?
  2. How does the identity (\

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Quadratic Equations
Trigonometric Identities

Formulas

csc^2(θ) = 1 + cot^2(θ)
Quadratic equation formula: x = (-b ± √(b^2 - 4ac)) / 2a
General solution for cot(θ): θ = cot^(-1)(x) + kπ, k ∈ Z

Theorems

Trigonometric identity: csc^2(θ) = 1 + cot^2(θ)
Quadratic formula

Suitable Grade Level

Grades 10-12