Math Problem Statement

Simplify

Simplify the trigonometric expression: sin(θ - π) * cot(θ - 7π/2) * sec(θ - π) / [cos(θ - 3π/2) * csc(θ + 5π/2)]

Solution

Let's simplify the given expression step by step. The expression is:

sin(θπ)cot(θ7π2)sec(θπ)cos(θ3π2)csc(θ+5π2)\frac{\sin(\theta - \pi) \cdot \cot \left(\theta - \frac{7\pi}{2} \right) \cdot \sec(\theta - \pi)}{\cos \left( \theta - \frac{3\pi}{2} \right) \cdot \csc\left(\theta + \frac{5\pi}{2}\right)}

Step 1: Use Trigonometric Identities for Angle Subtraction

We will simplify the trigonometric functions for each term based on standard angle subtraction formulas:

  1. sin(θπ)\sin(\theta - \pi): sin(θπ)=sin(θ)\sin(\theta - \pi) = -\sin(\theta)

  2. cot(θ7π2)\cot\left(\theta - \frac{7\pi}{2}\right): cot(θ7π2)=cot(θ+π2)=tan(θ)\cot\left(\theta - \frac{7\pi}{2}\right) = \cot\left(\theta + \frac{\pi}{2}\right) = -\tan(\theta) This is because cot(θ+π2)=tan(θ)\cot\left(\theta + \frac{\pi}{2}\right) = -\tan(\theta).

  3. sec(θπ)\sec(\theta - \pi): sec(θπ)=sec(θ)\sec(\theta - \pi) = -\sec(\theta)

  4. cos(θ3π2)\cos\left(\theta - \frac{3\pi}{2}\right): cos(θ3π2)=sin(θ)\cos\left(\theta - \frac{3\pi}{2}\right) = \sin(\theta)

  5. csc(θ+5π2)\csc\left(\theta + \frac{5\pi}{2}\right): csc(θ+5π2)=csc(θ+π2)=sec(θ)\csc\left(\theta + \frac{5\pi}{2}\right) = \csc\left(\theta + \frac{\pi}{2}\right) = \sec(\theta)

Step 2: Substitution into the Original Expression

Substitute these simplified trigonometric expressions into the original expression:

sin(θ)(tan(θ))(sec(θ))sin(θ)sec(θ)\frac{-\sin(\theta) \cdot (-\tan(\theta)) \cdot (-\sec(\theta))}{\sin(\theta) \cdot \sec(\theta)}

Step 3: Simplify the Expression

Now simplify the entire expression:

=sin(θ)tan(θ)sec(θ)sin(θ)sec(θ)= \frac{-\sin(\theta) \cdot \tan(\theta) \cdot \sec(\theta)}{\sin(\theta) \cdot \sec(\theta)}

Since sec(θ)\sec(\theta) cancels out from both numerator and denominator, and sin(θ)\sin(\theta) also cancels out:

=tan(θ)= -\tan(\theta)

Final Answer:

The simplified form of the given expression is:

tan(θ)-\tan(\theta)

Let me know if you would like more details on any step!

Relative Questions:

  1. What are some other common angle subtraction identities for sine and cosine?
  2. How do you simplify sec\sec and csc\csc functions in complex expressions?
  3. What is the significance of using trigonometric identities in simplifying expressions?
  4. Can you explain how the identity cot(θ+π2)=tan(θ)\cot(\theta + \frac{\pi}{2}) = -\tan(\theta) is derived?
  5. How can we apply these principles in calculus, for example in derivatives involving trigonometric functions?

Tip:

Always check for symmetry in trigonometric functions when simplifying complex expressions involving multiples of π\pi or π2\frac{\pi}{2}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angle subtraction identities

Formulas

sin(θ - π) = -sin(θ)
cot(θ - 7π/2) = -tan(θ)
sec(θ - π) = -sec(θ)
cos(θ - 3π/2) = sin(θ)
csc(θ + 5π/2) = sec(θ)

Theorems

Angle subtraction identities for trigonometric functions

Suitable Grade Level

Grades 11-12