Math Problem Statement

-3√18 + 3√8 - √24, -3√5 - √6 - √5, -3√3 - √8 - 3√3, 2√18 - 2√12 + 2√18

Solution

Let's go through the problems one by one.

Problem 18:

318+3824-3\sqrt{18} + 3\sqrt{8} - \sqrt{24} First, simplify the square roots:

  • 18=9×2=32\sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2}
  • 8=4×2=22\sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2}
  • 24=4×6=26\sqrt{24} = \sqrt{4 \times 6} = 2\sqrt{6}

Now substitute them back into the expression: 3(32)+3(22)26-3(3\sqrt{2}) + 3(2\sqrt{2}) - 2\sqrt{6} Simplify: 92+6226-9\sqrt{2} + 6\sqrt{2} - 2\sqrt{6} =3226= -3\sqrt{2} - 2\sqrt{6}

Problem 20:

3565-3\sqrt{5} - \sqrt{6} - \sqrt{5} Combine like terms: (355)6(-3\sqrt{5} - \sqrt{5}) - \sqrt{6} =456= -4\sqrt{5} - \sqrt{6}

Problem 22:

33833-3\sqrt{3} - \sqrt{8} - 3\sqrt{3} Simplify 8\sqrt{8}: 8=22\sqrt{8} = 2\sqrt{2} Now substitute back: 332233-3\sqrt{3} - 2\sqrt{2} - 3\sqrt{3} Combine like terms: 6322-6\sqrt{3} - 2\sqrt{2}

Problem 24:

218212+2182\sqrt{18} - 2\sqrt{12} + 2\sqrt{18} Simplify the square roots:

  • 18=32\sqrt{18} = 3\sqrt{2}
  • 12=23\sqrt{12} = 2\sqrt{3}

Substitute them back: 2(32)2(23)+2(32)2(3\sqrt{2}) - 2(2\sqrt{3}) + 2(3\sqrt{2}) Simplify: 6243+626\sqrt{2} - 4\sqrt{3} + 6\sqrt{2} Combine like terms: 1224312\sqrt{2} - 4\sqrt{3}


Would you like more details or have any questions on these?
Here are 5 related questions for further practice:

  1. How do you simplify 32\sqrt{32}?
  2. What is the result of 53+73335\sqrt{3} + 7\sqrt{3} - 3\sqrt{3}?
  3. Can you combine 47+3574\sqrt{7} + 3\sqrt{5} - \sqrt{7}?
  4. Simplify 2508+3182\sqrt{50} - \sqrt{8} + 3\sqrt{18}.
  5. What is the result of 72+41832\sqrt{72} + 4\sqrt{18} - \sqrt{32}?

Tip: Always look to simplify square roots first before performing operations like addition or subtraction.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Simplification of square roots
Radicals
Algebraic operations

Formulas

√(a * b) = √a * √b
Combining like terms involving radicals

Theorems

-

Suitable Grade Level

Grades 8-10