Math Problem Statement

Simplify the given square root expressions: 1. 5√15 + 2√15 2. 8√30 - 2√5 - 4√30 3. -√12 + 3√3 4. 5√3 - √27 5. 2√20 - 2√45 + 3√20 - √20 6. 6√5a - 4√5a

Solution

It looks like you've uploaded a photo with several mathematical expressions involving square roots. Let's solve them step by step.

  1. Expression 1: 515+2155\sqrt{15} + 2\sqrt{15} Combine like terms: (5+2)15=715(5 + 2)\sqrt{15} = 7\sqrt{15}

  2. Expression 2: 830254308\sqrt{30} - 2\sqrt{5} - 4\sqrt{30} Combine like terms: (84)3025=43025(8 - 4)\sqrt{30} - 2\sqrt{5} = 4\sqrt{30} - 2\sqrt{5}

  3. Expression 3: 12+33-\sqrt{12} + 3\sqrt{3} Simplify 12\sqrt{12}: 12=4×3=23\sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3} So the expression becomes: 23+33=(32)3=3-2\sqrt{3} + 3\sqrt{3} = (3 - 2)\sqrt{3} = \sqrt{3}

  4. Expression 4: 53275\sqrt{3} - \sqrt{27} Simplify 27\sqrt{27}: 27=9×3=33\sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3} So the expression becomes: 5333=(53)3=235\sqrt{3} - 3\sqrt{3} = (5 - 3)\sqrt{3} = 2\sqrt{3}

  5. Expression 5: 220245+3202\sqrt{20} - 2\sqrt{45} + 3\sqrt{20} Simplify 20\sqrt{20} and 45\sqrt{45}: 20=4×5=25,45=9×5=35\sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5}, \quad \sqrt{45} = \sqrt{9 \times 5} = 3\sqrt{5} Substituting these values in: 2(25)2(35)+3(25)=4565+652(2\sqrt{5}) - 2(3\sqrt{5}) + 3(2\sqrt{5}) = 4\sqrt{5} - 6\sqrt{5} + 6\sqrt{5} Combine like terms: (46+6)5=45(4 - 6 + 6)\sqrt{5} = 4\sqrt{5}

  6. Expression 6: 65a45a6\sqrt{5a} - 4\sqrt{5a} Combine like terms: (64)5a=25a(6 - 4)\sqrt{5a} = 2\sqrt{5a}

Would you like further clarification on any of these solutions? Feel free to ask any questions or request more examples. Here are some related questions you might find useful:

  1. How do you simplify square roots involving variables?
  2. Can you combine terms with different radicands?
  3. How do you handle expressions with more than two terms involving square roots?
  4. What are some tips for simplifying square roots in algebraic expressions?
  5. How do you factor square roots for easier simplification?

Tip: Always simplify square roots before combining terms—this makes handling expressions much easier!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Radicals
Simplifying Square Roots
Algebraic Expressions

Formulas

√(a * b) = √a * √b
a√b + c√b = (a + c)√b

Theorems

Properties of Square Roots

Suitable Grade Level

Grades 8-10