Math Problem Statement

Solve

Simplify the following expressions: 13. √4 − √121 14. √33 + 3 15. √91 − 27 16. √49 + √100 17. √49 + 0 18. (√100)²

Solution

Here are the step-by-step solutions for the provided problems:


13. 4121\sqrt{4} - \sqrt{121}

4=2,121=11\sqrt{4} = 2, \quad \sqrt{121} = 11

4121=211=9\sqrt{4} - \sqrt{121} = 2 - 11 = -9


14. 33+3\sqrt{33} + 3

335.744,so 33+3=5.744+38.744\sqrt{33} \approx 5.744, \quad \text{so } \sqrt{33} + 3 = 5.744 + 3 \approx 8.744


15. 9127\sqrt{91} - 27

919.533,so 9127=9.5332717.467\sqrt{91} \approx 9.533, \quad \text{so } \sqrt{91} - 27 = 9.533 - 27 \approx -17.467


16. 49+100\sqrt{49} + \sqrt{100}

49=7,100=10\sqrt{49} = 7, \quad \sqrt{100} = 10

49+100=7+10=17\sqrt{49} + \sqrt{100} = 7 + 10 = 17


17. 49+0\sqrt{49} + 0

49=7,so 49+0=7\sqrt{49} = 7, \quad \text{so } \sqrt{49} + 0 = 7


18. (100)2(\sqrt{100})^2

100=10,(100)2=102=100\sqrt{100} = 10, \quad (\sqrt{100})^2 = 10^2 = 100


Final Answers:

  1. 9-9
  2. 8.7448.744 (approximate)
  3. 17.467-17.467 (approximate)
  4. 1717
  5. 77
  6. 100100

Do you want further details or clarification on any of these steps?


Follow-Up Questions:

  1. What is the process for simplifying square roots involving approximate values?
  2. How does the property (x)2=x(\sqrt{x})^2 = x help simplify expressions?
  3. Why is 121\sqrt{121} an exact number but 91\sqrt{91} is not?
  4. Can 33+3\sqrt{33} + 3 be simplified further without approximations?
  5. How are properties of radicals used when solving equations?

Tip:

When working with square roots, remember to check if the number is a perfect square to avoid unnecessary approximations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Square roots
Simplification
Arithmetic operations

Formulas

√x = y where x is a non-negative number
(√x)² = x

Theorems

Properties of square roots

Suitable Grade Level

Grades 7-9