Math Problem Statement

1. Bentuk sederhana dari operasi 2√2 − √3 + 5√3 − √2 adalah? 2. Bentuk sederhana dari operasi 4√5 + 5√6 − 9√5 − √2 × 10√3 adalah?

Solution

Let's go through the questions in the image one by one.

Question 1:

Expression: 223+5322\sqrt{2} - \sqrt{3} + 5\sqrt{3} - \sqrt{2}

Simplification:

  • Group the terms involving 2\sqrt{2} and 3\sqrt{3}: (222)+(3+53)(2\sqrt{2} - \sqrt{2}) + (-\sqrt{3} + 5\sqrt{3}) Simplify each part: (21)2=2(2 - 1)\sqrt{2} = \sqrt{2} (1+5)3=43(-1 + 5)\sqrt{3} = 4\sqrt{3}

Thus, the simplified expression is: 2+43\sqrt{2} + 4\sqrt{3}

The correct answer is option A.


Question 2:

Expression: 45+56952×1034\sqrt{5} + 5\sqrt{6} - 9\sqrt{5} - \sqrt{2} \times 10\sqrt{3}

Simplification:

  • First, group the terms involving 5\sqrt{5} and 6\sqrt{6}: (4595)+(56)(4\sqrt{5} - 9\sqrt{5}) + (5\sqrt{6}) Simplify the 5\sqrt{5} terms: (49)5=55(4 - 9)\sqrt{5} = -5\sqrt{5} Also, note that 2×103\sqrt{2} \times 10\sqrt{3} simplifies as follows: 2×103=106\sqrt{2} \times 10\sqrt{3} = 10\sqrt{6} So, the expression becomes: 55+56106-5\sqrt{5} + 5\sqrt{6} - 10\sqrt{6} Simplify the 6\sqrt{6} terms: (510)6=56(5 - 10)\sqrt{6} = -5\sqrt{6}

Thus, the final simplified expression is: 5556-5\sqrt{5} - 5\sqrt{6}

The correct answer is option B.


Do you need further details on any step? Here are 5 related questions for additional practice:

  1. Simplify 3727+53433\sqrt{7} - 2\sqrt{7} + 5\sqrt{3} - 4\sqrt{3}.
  2. Combine like terms in the expression 7636+427\sqrt{6} - 3\sqrt{6} + 4\sqrt{2}.
  3. Simplify 6242+95956\sqrt{2} - 4\sqrt{2} + 9\sqrt{5} - 9\sqrt{5}.
  4. How would you simplify 12373+325212\sqrt{3} - 7\sqrt{3} + 3\sqrt{2} - 5\sqrt{2}?
  5. What is the result of 8+3228\sqrt{8} + 3\sqrt{2} - 2\sqrt{8}?

Tip: Always group like terms (terms with the same square root) before simplifying to make the process easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Simplifying Radical Expressions
Algebra

Formulas

Combining like terms for radicals (e.g., a√x + b√x = (a+b)√x)
Multiplication of square roots

Theorems

Basic Radical Simplification

Suitable Grade Level

Grades 9-11