Math Problem Statement

Rewrite the expression as a single logarithm: \frac{2}{5} \ln(x + 2)^5 + \frac{1}{2} \left[ \ln(x^4) - \ln(x^2 - 3x + 2)^2 \right]

Solution

To rewrite the given expression as a single logarithm, let's first clarify the expression that is shown in the image:

25ln(x+2)5+12[ln(x4)ln(x23x+2)2]\frac{2}{5} \ln(x + 2)^5 + \frac{1}{2} \left[ \ln(x^4) - \ln(x^2 - 3x + 2)^2 \right]

Step-by-Step Solution

  1. Simplify the expression inside the brackets:

    Using the logarithm rule ln(a)ln(b)=ln(ab)\ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right), we have:

    ln(x4)ln(x23x+2)2=ln(x4(x23x+2)2)\ln(x^4) - \ln(x^2 - 3x + 2)^2 = \ln\left(\frac{x^4}{(x^2 - 3x + 2)^2}\right)

  2. Multiply by the coefficient 12\frac{1}{2}:

    Apply the coefficient 12\frac{1}{2} to the logarithm:

    12ln(x4(x23x+2)2)=ln((x4(x23x+2)2)1/2)\frac{1}{2} \ln\left(\frac{x^4}{(x^2 - 3x + 2)^2}\right) = \ln\left(\left(\frac{x^4}{(x^2 - 3x + 2)^2}\right)^{1/2}\right)

    This simplifies to:

    ln(x2x23x+2)\ln\left(\frac{x^2}{x^2 - 3x + 2}\right)

  3. Simplify the first term:

    Using the logarithm power rule aln(b)=ln(ba)a \ln(b) = \ln(b^a), we can rewrite the first term:

    25ln(x+2)5=ln((x+2)2)\frac{2}{5} \ln(x + 2)^5 = \ln\left((x + 2)^2\right)

  4. Combine the logarithms:

    Now, combine the two logarithms into a single logarithm using the addition rule ln(a)+ln(b)=ln(ab)\ln(a) + \ln(b) = \ln(ab):

    ln((x+2)2x2x23x+2)\ln\left((x + 2)^2 \cdot \frac{x^2}{x^2 - 3x + 2}\right)

    This simplifies to:

    ln((x+2)2x2x23x+2)\ln\left(\frac{(x + 2)^2 \cdot x^2}{x^2 - 3x + 2}\right)

Final Answer

The given expression rewritten as a single logarithm is:

ln((x+2)2x2x23x+2)\ln\left(\frac{(x + 2)^2 \cdot x^2}{x^2 - 3x + 2}\right)

Would you like more details on this solution or

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Algebra
Logarithmic Simplification

Formulas

ln(a) - ln(b) = ln(a/b)
a ln(b) = ln(b^a)
ln(a) + ln(b) = ln(ab)

Theorems

Logarithmic Properties

Suitable Grade Level

Grades 11-12