Math Problem Statement

Simplify the following equation: a. 2 log_2 √5 + (1/3) log_2 550 - log_2 10 + log_2 360 b. log_100 100 + log_500 500 - log_1000 1000

Solution

Let's simplify each expression step by step.

Part a:

The given expression is: 2log25+13log2550log210+log2360.2 \log_2 \sqrt{5} + \frac{1}{3} \log_2 550 - \log_2 10 + \log_2 360.

  1. Simplify 2log252 \log_2 \sqrt{5}: 2log25=212log25=log25.2 \log_2 \sqrt{5} = 2 \cdot \frac{1}{2} \log_2 5 = \log_2 5.

  2. Simplify 13log2550\frac{1}{3} \log_2 550: 13log2550=log25501/3.\frac{1}{3} \log_2 550 = \log_2 550^{1/3}.

  3. Combine the logs using the properties of logarithms: The expression becomes: log25+log25501/3log210+log2360.\log_2 5 + \log_2 550^{1/3} - \log_2 10 + \log_2 360. Using the logarithm addition and subtraction properties: log2(55501/336010).\log_2 \left( \frac{5 \cdot 550^{1/3} \cdot 360}{10} \right).

  4. Simplify the argument: 55501/336010=1805501/3.\frac{5 \cdot 550^{1/3} \cdot 360}{10} = 180 \cdot 550^{1/3}. So, the simplified form is: log2(1805501/3).\log_2 (180 \cdot 550^{1/3}).

Part b:

The given expression is: log100100+log500500log10001000.\log_{100} 100 + \log_{500} 500 - \log_{1000} 1000.

  1. Simplify each logarithm:

    • log100100=1\log_{100} 100 = 1, since 1001=100100^1 = 100.
    • log500500=1\log_{500} 500 = 1, since 5001=500500^1 = 500.
    • log10001000=1\log_{1000} 1000 = 1, since 10001=10001000^1 = 1000.
  2. Combine the results: 1+11=1.1 + 1 - 1 = 1.

Summary:

  • Part a: log2(1805501/3)\log_2 (180 \cdot 550^{1/3}).
  • Part b: 1.

Would you like more details or have any questions about these solutions?

Related Questions:

  1. How do logarithmic properties simplify complex logarithmic expressions?
  2. What are some other common logarithmic simplification techniques?
  3. How does the change of base formula apply to these problems?
  4. Can logarithms with different bases be directly combined or simplified?
  5. What is the significance of understanding logarithmic functions in real-world applications?

Tip:

Always remember the properties of logarithms: logb(xy)=logbx+logby\log_b (xy) = \log_b x + \log_b y and logb(xy)=logbxlogby\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y, as these are essential in simplifying expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Algebra
Properties of Logarithms

Formulas

log_b(xy) = log_b(x) + log_b(y)
log_b(x/y) = log_b(x) - log_b(y)
log_b(x^n) = n * log_b(x)

Theorems

Properties of Logarithms
Change of Base Formula

Suitable Grade Level

Grades 10-12