Math Problem Statement

Let f(x)= x^2 -2x and g(x) 4x^2 -6x+8 simplify using the steps given. Simplify using the steps given. Simply -2g(2a+3) +4f(1)

Solution

To simplify the expression 2g(2a+3)+4f(1)-2g(2a + 3) + 4f(1), let's break it down step by step.

Step 1: Define the functions

Given the functions:

  • f(x)=x22xf(x) = x^2 - 2x
  • g(x)=4x26x+8g(x) = 4x^2 - 6x + 8

Step 2: Evaluate f(1)f(1)

We substitute x=1x = 1 into the function f(x)f(x):

f(1)=122(1)=12=1f(1) = 1^2 - 2(1) = 1 - 2 = -1

Step 3: Evaluate g(2a+3)g(2a + 3)

Now, substitute x=2a+3x = 2a + 3 into the function g(x)g(x):

g(2a+3)=4(2a+3)26(2a+3)+8g(2a + 3) = 4(2a + 3)^2 - 6(2a + 3) + 8

First, expand (2a+3)2(2a + 3)^2:

(2a+3)2=4a2+12a+9(2a + 3)^2 = 4a^2 + 12a + 9

Now substitute this into the expression for g(2a+3)g(2a + 3):

g(2a+3)=4(4a2+12a+9)6(2a+3)+8g(2a + 3) = 4(4a^2 + 12a + 9) - 6(2a + 3) + 8

Distribute the constants:

g(2a+3)=16a2+48a+3612a18+8g(2a + 3) = 16a^2 + 48a + 36 - 12a - 18 + 8

Simplify the terms:

g(2a+3)=16a2+36a+26g(2a + 3) = 16a^2 + 36a + 26

Step 4: Substitute into the original expression

Now, substitute the values of g(2a+3)g(2a + 3) and f(1)f(1) into the original expression:

2g(2a+3)+4f(1)=2(16a2+36a+26)+4(1)-2g(2a + 3) + 4f(1) = -2(16a^2 + 36a + 26) + 4(-1)

Distribute the constants:

=32a272a524= -32a^2 - 72a - 52 - 4

Simplify:

=32a272a56= -32a^2 - 72a - 56

Final Simplified Expression:

32a272a56-32a^2 - 72a - 56


Would you like further details or have any questions about the process? Here are some related questions you can explore:

  1. How would you evaluate f(x)f(x) and g(x)g(x) for different values of xx?
  2. How do you factor quadratic expressions like 32a272a56-32a^2 - 72a - 56?
  3. What would happen if you evaluated f(x)f(x) and g(x)g(x) for non-integer values of xx?
  4. How can we find the vertex of the quadratic function f(x)f(x)?
  5. What would the result be if we substituted 2a+32a + 3 into a different function h(x)h(x)?

Tip: When working with quadratic expressions, always check if there is an opportunity to factor or complete the square to simplify or analyze the function more deeply.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Functions
Quadratic Equations

Formulas

f(x) = x^2 - 2x
g(x) = 4x^2 - 6x + 8

Theorems

Function evaluation
Quadratic expansion and simplification

Suitable Grade Level

Grades 9-11