Math Problem Statement

answer this question:

Simplify each of the following expressions: a) 6^(-1/4) * 36^(-3/8) b) (27/8)^(-1/3) * (4/16)^(-1/2)

Solution

Let's solve each expression step-by-step.

Part (a)

The expression is: 61436386^{-\frac{1}{4}} \cdot 36^{-\frac{3}{8}}

  1. Evaluate 6146^{-\frac{1}{4}}: 614=1614=1640.45736^{-\frac{1}{4}} = \frac{1}{6^{\frac{1}{4}}} = \frac{1}{\sqrt[4]{6}} \approx 0.4573

  2. Evaluate 363836^{-\frac{3}{8}}: 3638=13638=1363836^{-\frac{3}{8}} = \frac{1}{36^{\frac{3}{8}}} = \frac{1}{\sqrt[8]{36^3}} Since 36=6236 = 6^2, we can rewrite this as: 3638=(62)38=634=16340.36636^{-\frac{3}{8}} = (6^2)^{-\frac{3}{8}} = 6^{-\frac{3}{4}} = \frac{1}{6^{\frac{3}{4}}} \approx 0.366

  3. Multiply the results: 61436380.45730.3660.1676^{-\frac{1}{4}} \cdot 36^{-\frac{3}{8}} \approx 0.4573 \cdot 0.366 \approx 0.167

Therefore, the answer to (a) is approximately 0.167, which appears correct.


Part (b)

The expression is: (278)13(416)12\left(\frac{27}{8}\right)^{-\frac{1}{3}} \cdot \left(\frac{4}{16}\right)^{-\frac{1}{2}}

  1. Evaluate (278)13\left(\frac{27}{8}\right)^{-\frac{1}{3}}: (278)13=1(278)13=132=230.6667\left(\frac{27}{8}\right)^{-\frac{1}{3}} = \frac{1}{\left(\frac{27}{8}\right)^{\frac{1}{3}}} = \frac{1}{\frac{3}{2}} = \frac{2}{3} \approx 0.6667

  2. Evaluate (416)12\left(\frac{4}{16}\right)^{-\frac{1}{2}}: Simplify 416\frac{4}{16} first: 416=14\frac{4}{16} = \frac{1}{4} Then: (14)12=1(14)12=112=2\left(\frac{1}{4}\right)^{-\frac{1}{2}} = \frac{1}{\left(\frac{1}{4}\right)^{\frac{1}{2}}} = \frac{1}{\frac{1}{2}} = 2

  3. Multiply the results: (278)13(416)12=0.66672=1.333\left(\frac{27}{8}\right)^{-\frac{1}{3}} \cdot \left(\frac{4}{16}\right)^{-\frac{1}{2}} = 0.6667 \cdot 2 = 1.333

Thus, the answer to (b) is 1.333, which appears correct.


Would you like further details or have any questions?

Related Questions

  1. How would the answers change if we modified the exponents?
  2. What is the impact of negative exponents on fractions?
  3. How can we generalize these steps to other base numbers?
  4. How do we convert fractional exponents to radicals?
  5. What are common mistakes to avoid when simplifying expressions with fractional exponents?

Tip

When working with fractional exponents, remember that a negative exponent indicates a reciprocal, and fractional values relate to roots.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Fractional Exponents
Negative Exponents
Radicals

Formulas

a^(-m) = 1 / a^m
a^(m/n) = n-th root of (a^m)

Theorems

Properties of Exponents

Suitable Grade Level

Grades 9-10