Math Problem Statement

Simplify the complex expression: z = \frac{(1 + i)^4 (1 + i \sqrt{3})^5}{2 \cos \frac{\pi}{20} + 2 i \sin \frac{\pi}{20}}

Solution

The equation provided in the image is:

z=(1+i)4(1+i3)52cosπ20+2isinπ20z = \frac{(1 + i)^4 (1 + i \sqrt{3})^5}{2 \cos \frac{\pi}{20} + 2 i \sin \frac{\pi}{20}}

I will simplify this expression step by step.

Step 1: Simplify the numerator

  1. For (1+i)4(1 + i)^4: 1+ican be rewritten in polar form as2cis(π4)1 + i \quad \text{can be rewritten in polar form as} \quad \sqrt{2} \text{cis}\left(\frac{\pi}{4}\right) Therefore: (1+i)4=(2)4cis(4π4)=4cis(π)(1 + i)^4 = (\sqrt{2})^4 \text{cis}\left(4 \cdot \frac{\pi}{4}\right) = 4 \text{cis}(\pi) Which simplifies to: 4(1)=44 \cdot (-1) = -4

  2. **

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Polar Form
Euler's Formula
Trigonometric Functions

Formulas

z = r \text{cis}(\theta)
Euler's formula: e^{i\theta} = \cos(\theta) + i\sin(\theta)
Trigonometric identities

Theorems

Euler's Theorem
De Moivre's Theorem

Suitable Grade Level

Undergraduate Level