Math Problem Statement

Simplify and evaluate the expression z = [(1+i)^4 * (1 + i√3)^5] / [(2 cos(π/20) + 2 i sin(π/20))^6].

Solution

The expression in the image can be written as:

z=(1+i)4(1+i3)5(2cos(π20)+2isin(π20))6z = \frac{(1+i)^4 \cdot (1 + i\sqrt{3})^5}{\left( 2\cos\left(\frac{\pi}{20}\right) + 2i \sin\left(\frac{\pi}{20}\right)\right)^6}

Let's simplify and solve this step by step:

1. Numerator

  • (1+i)4(1+i)^4: First, express 1+i1+i in polar form: 1+i=2cis(π4)1+i = \sqrt{2} \text{cis}\left(\frac{\pi}{4}\right) Using De Moivre's Theorem for powers of complex numbers: (1+i)4=(2)4cis(4π4)=4cis(π)=4(1)=4(1+i)^4 = \left(\sqrt{2}\right)^4 \text{cis}\left(4 \cdot \frac{\pi}{4}\right) = 4 \cdot \text{cis}(\pi) = 4(-1) = -4

  • \

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
De Moivre's Theorem
Polar Form of Complex Numbers

Formulas

(1 + i)^4 = (√2)^4 * cis(π) = 4 * (-1) = -4
1 + i√3 in polar form
De Moivre's Theorem: (r cis θ)^n = r^n * cis(nθ)
Euler's Formula: e^(iθ) = cos θ + i sin θ

Theorems

De Moivre's Theorem
Euler's Formula

Suitable Grade Level

Undergraduate (Complex Numbers & Advanced Algebra)