Math Problem Statement

Write the expression \((\sqrt{5} - i)^8\) in rectangular form \(x + yi\) and exponential form \(re^{i\theta}\).

Solution

The problem involves expressing the given complex number (5i)8(\sqrt{5} - i)^8 in two forms: rectangular form (x+yi)(x + yi) and exponential form (reiθ)(re^{i\theta}). Here's how we solve it:

Step 1: Express 5i\sqrt{5} - i in polar form

  1. The magnitude rr of the complex number is calculated as: r=(5)2+(1)2=5+1=6.r = \sqrt{(\sqrt{5})^2 + (-1)^2} = \sqrt{5 + 1} = \sqrt{6}.

  2. The argument θ\theta (angle in radians) is calculated using: θ=tan1(15).\theta = \tan^{-1}\left(\frac{-1}{\sqrt{5}}\right). Since the complex number is in the fourth quadrant, the angle is negative: θ=tan1(15).\theta = -\tan^{-1}\left(\frac{1}{\sqrt{5}}\right).

    Let θ0=tan1(15)\theta_0 = \tan^{-1}\left(\frac{1}{\sqrt{5}}\right), so θ=θ0\theta = -\theta_0.

    Using a calculator: tan1(15)0.4049radians.\tan^{-1}\left(\frac{1}{\sqrt{5}}\right) \approx 0.4049 \, \text{radians.} Thus: θ0.4049.\theta \approx -0.4049.

So, the polar form of 5i\sqrt{5} - i is: 6ei0.4049.\sqrt{6} \, e^{-i0.4049}.

Step 2: Raise the number to the power of 8

Using De Moivre's theorem: (reiθ)n=rneinθ.\left(r e^{i\theta}\right)^n = r^n e^{in\theta}. Here, r=6r = \sqrt{6}, θ=0.4049\theta = -0.4049, and n=8n = 8. Compute:

  1. r8=(6)8=(64)=1296.r^8 = (\sqrt{6})^8 = (6^4) = 1296.
  2. nθ=8(0.4049)=3.2392radians.n\theta = 8 \cdot (-0.4049) = -3.2392 \, \text{radians.}

Thus, the result in exponential form is: 1296ei3.2392.1296 \, e^{-i3.2392}.

Step 3: Convert back to rectangular form

To convert to rectangular form, use: x+yi=rcos(θ)+irsin(θ),x + yi = r \cos(\theta) + i r \sin(\theta), where r=1296r = 1296 and θ=3.2392\theta = -3.2392. Compute:

  1. cos(3.2392)0.9950\cos(-3.2392) \approx -0.9950,
  2. sin(3.2392)0.0995\sin(-3.2392) \approx -0.0995.

So: x+yi=1296(0.9950)+i1296(0.0995),x + yi = 1296 \cdot (-0.9950) + i \cdot 1296 \cdot (-0.0995), x+yi1289.52128.95i.x + yi \approx -1289.52 - 128.95i.

Final Answer:

  1. Rectangular form: 1289.52128.95i-1289.52 - 128.95i,
  2. Exponential form: 1296ei3.23921296 \, e^{-i3.2392}.

Would you like a deeper explanation of any step or clarification? Here are some related questions you might find helpful:

  1. How do you derive the formula for converting a complex number to polar form?
  2. What is De Moivre's theorem, and why is it useful for powers of complex numbers?
  3. How do you calculate tan1\tan^{-1} values manually or using a calculator?
  4. Why does the quadrant of the angle affect the value of θ\theta?
  5. What are the advantages of polar and exponential forms over rectangular form in complex calculations?

Tip: Always confirm the quadrant of the angle when converting to polar form—it determines the sign of the argument!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Polar and Rectangular Forms
Exponential Form
Trigonometry

Formulas

Magnitude: \(r = \sqrt{x^2 + y^2}\)
Argument: \(\theta = \tan^{-1}\left(\frac{y}{x}\right)\)
Exponential Form: \(z = re^{i\theta}\)
De Moivre's Theorem: \(\left(re^{i\theta}\right)^n = r^n e^{in\theta}\)
Rectangular Form: \(x + yi = r\cos(\theta) + ir\sin(\theta)\)

Theorems

De Moivre's Theorem

Suitable Grade Level

Grades 11-12