Math Problem Statement

Selected values of f, of, xf(x) are shown in the table below. What is the right Riemann sum approximation for integral, from, 4, to, 19, of, f, of, x, d, x∫ 4 19 ​ f(x)dx using 5 subintervals as indicated by the table? xx 44 77 1111 1313 1616 1919 f, of, xf(x) 1111 1818 2424 2929 4040 2828

Solution

To approximate the integral 419f(x)dx\int_{4}^{19} f(x) \, dx using the right Riemann sum with the given 5 subintervals, we'll follow these steps:


Step-by-Step Solution:

  1. Subintervals: From the table, the xx-values divide the interval [4,19][4, 19] into the following 5 subintervals:

    • [4,7][4, 7]
    • [7,11][7, 11]
    • [11,13][11, 13]
    • [13,16][13, 16]
    • [16,19][16, 19]
  2. Widths (Δx\Delta x): The width of each subinterval is the difference between consecutive xx-values:

    • Δx1=74=3\Delta x_1 = 7 - 4 = 3
    • Δx2=117=4\Delta x_2 = 11 - 7 = 4
    • Δx3=1311=2\Delta x_3 = 13 - 11 = 2
    • Δx4=1613=3\Delta x_4 = 16 - 13 = 3
    • Δx5=1916=3\Delta x_5 = 19 - 16 = 3
  3. Function Values (f(x)f(x)): For the right Riemann sum, we use the function values at the right endpoints of each subinterval:

    • For [4,7][4, 7], the right endpoint is x=7x = 7, so f(7)=18f(7) = 18
    • For [7,11][7, 11], the right endpoint is x=11x = 11, so f(11)=24f(11) = 24
    • For [11,13][11, 13], the right endpoint is x=13x = 13, so f(13)=29f(13) = 29
    • For [13,16][13, 16], the right endpoint is x=16x = 16, so f(16)=40f(16) = 40
    • For [16,19][16, 19], the right endpoint is x=19x = 19, so f(19)=28f(19) = 28
  4. Right Riemann Sum Formula: The approximation is given by: Right Riemann Sum=i=15f(xi)Δxi\text{Right Riemann Sum} = \sum_{i=1}^5 f(x_i^*) \cdot \Delta x_i Where xix_i^* is the right endpoint of the ii-th subinterval.

  5. Substitute Values: Right Riemann Sum=(183)+(244)+(292)+(403)+(283)\text{Right Riemann Sum} = (18 \cdot 3) + (24 \cdot 4) + (29 \cdot 2) + (40 \cdot 3) + (28 \cdot 3)

  6. Simplify Each Term:

    • 183=5418 \cdot 3 = 54
    • 244=9624 \cdot 4 = 96
    • 292=5829 \cdot 2 = 58
    • 403=12040 \cdot 3 = 120
    • 283=8428 \cdot 3 = 84
  7. Sum Them Up: Right Riemann Sum=54+96+58+120+84=412\text{Right Riemann Sum} = 54 + 96 + 58 + 120 + 84 = 412


Final Answer:

The right Riemann sum approximation for 419f(x)dx\int_{4}^{19} f(x) \, dx is: 412\boxed{412}


Would you like a detailed explanation of any specific step? 😊


5 Related Questions:

  1. What is the difference between a right Riemann sum and a left Riemann sum?
  2. How does the number of subintervals affect the accuracy of a Riemann sum?
  3. How would the midpoint Riemann sum approximation differ for this example?
  4. Can you calculate the average value of the function f(x)f(x) over [4,19][4, 19]?
  5. How is the trapezoidal rule different from the Riemann sum in approximating integrals?

Tip:

When solving Riemann sums, always carefully identify the endpoints and widths of subintervals, as errors in these values can easily propagate through calculations!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Approximation
Riemann Sum
Right Riemann Sum
Subintervals

Formulas

Right Riemann Sum = Σ (f(x_i) * Δx_i)

Theorems

Riemann Sum Approximation for Definite Integrals

Suitable Grade Level

Grades 10-12