Math Problem Statement

What is the left Riemann sum approximation for ∫₃¹⁴ f(x) dx using 5 subintervals as indicated by the table?

Solution

To solve the problem, we calculate the left Riemann sum for the given integral 314f(x)dx\int_{3}^{14} f(x) \, dx using 5 subintervals as indicated by the table. Here's the step-by-step process:

Steps:

  1. Identify subintervals: The subintervals are determined by the given xx-values in the table: [3,5],[5,6],[6,9],[9,11],[11,14][3, 5], [5, 6], [6, 9], [9, 11], [11, 14].

  2. Determine the left endpoint values: For a left Riemann sum, we use the f(x)f(x)-values corresponding to the left endpoints of each subinterval. From the table, these are: f(3)=17,f(5)=12,f(6)=11,f(9)=10,f(11)=8.f(3) = 17, \, f(5) = 12, \, f(6) = 11, \, f(9) = 10, \, f(11) = 8.

  3. Compute the width of each subinterval (Δx\Delta x):

    • For [3,5][3, 5], Δx=53=2\Delta x = 5 - 3 = 2,
    • For [5,6][5, 6], Δx=65=1\Delta x = 6 - 5 = 1,
    • For [6,9][6, 9], Δx=96=3\Delta x = 9 - 6 = 3,
    • For [9,11][9, 11], Δx=119=2\Delta x = 11 - 9 = 2,
    • For [11,14][11, 14], Δx=1411=3\Delta x = 14 - 11 = 3.
  4. Calculate the Riemann sum: Multiply each f(x)f(x) value by the corresponding Δx\Delta x and sum: Left Riemann Sum=f(3)Δx1+f(5)Δx2+f(6)Δx3+f(9)Δx4+f(11)Δx5.\text{Left Riemann Sum} = f(3) \cdot \Delta x_1 + f(5) \cdot \Delta x_2 + f(6) \cdot \Delta x_3 + f(9) \cdot \Delta x_4 + f(11) \cdot \Delta x_5. Substituting the values: Left Riemann Sum=(172)+(121)+(113)+(102)+(83).\text{Left Riemann Sum} = (17 \cdot 2) + (12 \cdot 1) + (11 \cdot 3) + (10 \cdot 2) + (8 \cdot 3).

  5. Simplify: Left Riemann Sum=34+12+33+20+24=123.\text{Left Riemann Sum} = 34 + 12 + 33 + 20 + 24 = 123.

Final Answer:

The left Riemann sum is 123.


Would you like a detailed explanation of any step or more examples? 😊


5 Related Questions:

  1. How does a left Riemann sum differ from a right Riemann sum?
  2. How do you compute a Riemann sum when the subinterval widths (Δx\Delta x) are uniform?
  3. Can you explain the connection between Riemann sums and definite integrals?
  4. What happens if we increase the number of subintervals in a Riemann sum?
  5. How would the result change if we used the midpoint Riemann sum for this problem?

Tip:

For irregular subintervals (different Δx\Delta x), always double-check the widths before applying the sum formula.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Riemann Sums
Definite Integrals
Numerical Approximation

Formulas

Left Riemann Sum = Σ [f(xᵢ) * Δxᵢ]

Theorems

Fundamental Theorem of Calculus (conceptual link to definite integrals)

Suitable Grade Level

Grades 10-12