Math Problem Statement

Set up the Riemann sum for the integral \(\int_{0}^{6}(5x - x^2)dx\) and express it in summation form.

Solution

To solve this problem, we need to set up the Riemann sum for the integral

06(5xx2)dx\int_{0}^{6}(5x - x^2)dx

Step-by-Step Solution:

  1. Define the Components:

    • a=0a = 0, b=6b = 6
    • The function f(x)=5xx2f(x) = 5x - x^2
    • Divide the interval [0,6][0,6] into nn subintervals, each of width: Δx=ban=60n=6n\Delta x = \frac{b-a}{n} = \frac{6-0}{n} = \frac{6}{n}
    • The kk-th sample point in the interval is: xk=a+kΔx=0+k6n=6knx_k = a + k\Delta x = 0 + k\frac{6}{n} = \frac{6k}{n}
  2. Riemann Sum Form: Using the definition of a Riemann sum: 06(5xx2)dx=limnk=1nf(xk)Δx\int_{0}^{6}(5x - x^2)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_k)\Delta x Substitute f(x)=5xx2f(x) = 5x - x^2 and the sample point xk=6knx_k = \frac{6k}{n}: f(xk)=5(6kn)(6kn)2f(x_k) = 5\left(\frac{6k}{n}\right) - \left(\frac{6k}{n}\right)^2

  3. Simplify f(xk)f(x_k): f(xk)=56kn(6kn)2f(x_k) = 5\frac{6k}{n} - \left(\frac{6k}{n}\right)^2 f(xk)=30kn36k2n2f(x_k) = \frac{30k}{n} - \frac{36k^2}{n^2}

  4. Substitute into the Riemann Sum: 06(5xx2)dx=limnk=1n(30kn36k2n2)6n\int_{0}^{6}(5x - x^2)dx = \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{30k}{n} - \frac{36k^2}{n^2}\right)\frac{6}{n} Expand the terms: 06(5xx2)dx=limnk=1n(180kn2216k2n3)\int_{0}^{6}(5x - x^2)dx = \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{180k}{n^2} - \frac{216k^2}{n^3}\right)

This is the setup for the Riemann sum. Would you like further assistance in simplifying this sum or evaluating it? Let me know!


Related Questions:

  1. How do you compute the actual value of this definite integral using limits?
  2. What is the role of the sample point xkx_k in defining the Riemann sum?
  3. What happens if you change the sampling method (e.g., midpoint or right-endpoint)?
  4. Can this integral be evaluated directly using the Fundamental Theorem of Calculus?
  5. How does the width of each subinterval (Δx\Delta x) affect the accuracy of the approximation for a finite nn?

Tip:

Always double-check your substitution for xkx_k and Δx\Delta x in a Riemann sum setup to avoid computational errors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Riemann Sums
Definite Integrals
Algebraic Functions

Formulas

Definition of Riemann sum: \(\int_{a}^{b}f(x)dx = \lim_{n\to\infty}\sum_{k=1}^{n}f(\bar{x}_k)\Delta x\)
Width of subintervals: \(\Delta x = \frac{b-a}{n}\)
Sample point formula: \(x_k = a + k\Delta x\)

Theorems

Definition of the Definite Integral
Riemann Sum Approximation

Suitable Grade Level

Grades 11-12 or College Level