Math Problem Statement

Solve this as a limit to riemann sum with correct endpoints

Solve this as a limit to Riemann sum with correct endpoints

Solution

To solve this integral using the definition of the Riemann sum, we start with the given integral:

I=02(5x22x)dxI = \int_0^2 (5x^2 - 2x) \, dx

Step-by-step process:

  1. Divide the interval [0,2][0, 2] into nn subintervals of equal width: Δx=ban=20n=2n.\Delta x = \frac{b-a}{n} = \frac{2-0}{n} = \frac{2}{n}.

  2. Choose sample points xix_i^* within each subinterval:

    • For a right Riemann sum, we use xi=a+iΔx=0+i2n=2inx_i^* = a + i \Delta x = 0 + i \frac{2}{n} = \frac{2i}{n}, where i=1,2,,ni = 1, 2, \dots, n.
  3. Express the function f(x)f(x) evaluated at xix_i^*: f(xi)=5(2in)22(2in).f\left(x_i^*\right) = 5\left(\frac{2i}{n}\right)^2 - 2\left(\frac{2i}{n}\right).

    Simplify: f(xi)=5(4i2n2)2(2in)=20i2n24in.f\left(x_i^*\right) = 5\left(\frac{4i^2}{n^2}\right) - 2\left(\frac{2i}{n}\right) = \frac{20i^2}{n^2} - \frac{4i}{n}.

  4. Set up the Riemann sum: Sn=i=1nf(xi)Δx.S_n = \sum_{i=1}^n f\left(x_i^*\right) \Delta x.

    Substitute f(xi)f(x_i^*) and Δx\Delta x: Sn=i=1n(20i2n24in)2n.S_n = \sum_{i=1}^n \left(\frac{20i^2}{n^2} - \frac{4i}{n}\right) \cdot \frac{2}{n}.

    Simplify: Sn=2ni=1n(20i2n24in)=2n(20n2i=1ni24ni=1ni).S_n = \frac{2}{n} \sum_{i=1}^n \left(\frac{20i^2}{n^2} - \frac{4i}{n}\right) = \frac{2}{n} \left(\frac{20}{n^2} \sum_{i=1}^n i^2 - \frac{4}{n} \sum_{i=1}^n i\right).

  5. Use summation formulas:

    • i=1ni2=n(n+1)(2n+1)6\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6},
    • i=1ni=n(n+1)2\sum_{i=1}^n i = \frac{n(n+1)}{2}.

    Substitute these into the Riemann sum: Sn=2n(20n2n(n+1)(2n+1)64nn(n+1)2).S_n = \frac{2}{n} \left(\frac{20}{n^2} \cdot \frac{n(n+1)(2n+1)}{6} - \frac{4}{n} \cdot \frac{n(n+1)}{2}\right).

    Simplify each term:

    • First term: 20n2n(n+1)(2n+1)6=20(n+1)(2n+1)6n.\frac{20}{n^2} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{20(n+1)(2n+1)}{6n}.

    • Second term: 4nn(n+1)2=4(n+1)2=2(n+1).\frac{4}{n} \cdot \frac{n(n+1)}{2} = \frac{4(n+1)}{2} = 2(n+1).

    Combine: Sn=2n(20(n+1)(2n+1)6n2(n+1)).S_n = \frac{2}{n} \left(\frac{20(n+1)(2n+1)}{6n} - 2(n+1)\right).

  6. Take the limit as nn \to \infty:

    • Expand and simplify (n+1)(2n+1)(n+1)(2n+1) in the numerator.
    • Only the highest order terms of nn will remain significant.

    After simplification: limnSn=02(5x22x)dx=2034=83.\lim_{n \to \infty} S_n = \int_0^2 (5x^2 - 2x) \, dx = \frac{20}{3} - 4 = \frac{8}{3}.

Final Answer:

I=83.I = \frac{8}{3}.

Let me know if you would like further clarification or a detailed breakdown of any step!


Related Questions:

  1. What is the difference between left, right, and midpoint Riemann sums?
  2. How does increasing the number of subintervals improve the approximation of the integral?
  3. What is the geometric interpretation of this integral?
  4. Can you apply the trapezoidal rule to approximate this integral?
  5. What happens if we calculate this integral using symbolic integration directly?

Tip: Always visualize the problem if possible. Graphing the function helps you understand its behavior over the given

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Riemann Sum
Definite Integral
Summation
Limits
Polynomial Functions

Formulas

Riemann Sum: S_n = Σ f(x_i^*) Δx
Sum of squares: Σ i^2 = n(n+1)(2n+1)/6
Sum of integers: Σ i = n(n+1)/2

Theorems

Fundamental Theorem of Calculus
Riemann Sum Convergence

Suitable Grade Level

Grades 11-12