Math Problem Statement

Evaluate \(\int_0^2 (5 - x) \, dx\) using the Riemann sum and \(\int_2^6 x^2 \, dx\) using the Riemann sum.

Solution

Let's go through the problems in the image step-by-step.

Problem 2: Evaluate 02(5x)dx\int_0^2 (5 - x) \, dx using the Riemann sum.

To evaluate this integral using the Riemann sum, we follow these steps:

  1. Define the function and interval: f(x)=5xon the interval[0,2]f(x) = 5 - x \quad \text{on the interval} \quad [0, 2]

  2. Divide the interval into nn subintervals: The width of each subinterval, Δx\Delta x, is: Δx=20n=2n\Delta x = \frac{2 - 0}{n} = \frac{2}{n}

  3. Determine xkx_k: The kk-th subinterval is at: xk=0+kΔx=2knx_k = 0 + k \cdot \Delta x = \frac{2k}{n}

  4. Set up the Riemann sum: Using the left endpoint, the Riemann sum becomes: k=1nf(xk)Δx=k=1n(52kn)2n\sum_{k=1}^n f(x_k) \Delta x = \sum_{k=1}^n \left(5 - \frac{2k}{n}\right) \cdot \frac{2}{n}

  5. Simplify the sum: Expand the expression inside the summation: =k=1n(104kn)1n=2nk=1n(52kn)= \sum_{k=1}^n \left(10 - \frac{4k}{n}\right) \cdot \frac{1}{n} = \frac{2}{n} \sum_{k=1}^n \left(5 - \frac{2k}{n}\right)

After

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Riemann Sum
Definite Integrals

Formulas

\( \int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{k=1}^n f(\bar{x}_k) \Delta x \)

Theorems

Riemann Sum Definition

Suitable Grade Level

College Calculus (Calculus I)