Math Problem Statement
( i) div(curl vec G )=0. (ii) curl( nabla f)= vec 0 . (iii) curl(f vec G )=f(curl vec G )+( nabla f)( vec G ). (iv) div( nabla f)= nabla^ 2 f. (v) div( vec F + vec G )=div vec F +div vec G . (vi) div (f vec G )=f(div vec G )+( nabla f)( vec G ). (vii) nabla(fg)=f nabla g+g nabla f.
Rewrite the formulas (i)-(vi) from problem 3 using the notations nabla* vec H instead of div vec H and nabla* vec H instead of curl vec H (For example , (iv ) can be written as nabla*( nabla f)= nabla^ 2 f.)
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Vector Calculus
Divergence
Curl
Gradient
Laplacian
Formulas
nabla*(nabla* vec G) = 0
nabla*(nabla f) = vec 0
nabla*(f vec G) = f(nabla* vec G) + (nabla f) * vec G
nabla*(nabla f) = nabla^2 f
nabla*(vec F + vec G) = nabla* vec F + nabla* vec G
nabla*(f vec G) = f(nabla* vec G) + (nabla f) * vec G
Theorems
Divergence Theorem
Product Rule in Vector Calculus
Suitable Grade Level
Undergraduate (Vector Calculus Level)
Related Recommendation
Understanding Gradient, Divergence, and Curl in Vector Calculus
Proving Vector Calculus Identities: δμ = 1/2(Δ + ∇) and Δ - ∇^2 = Δ∇
Proof of Identities Involving Gradient and Laplacian
Proving the Relationship Between Nabla and Laplace Operators
Proving Operator Equations: δμ and Δ - ∇^2 in Vector Calculus