Math Problem Statement

Use the formulas for lowering powers to rewrite the expression \(\sin^6(x)\) in terms of the first power of cosine.

Solution

To rewrite sin6(x)\sin^6(x) in terms of the first power of cosine, we can use power-reducing formulas. These formulas relate higher powers of sine and cosine to lower powers. The key formulas are:

sin2(x)=1cos(2x)2\sin^2(x) = \frac{1 - \cos(2x)}{2}

To break down sin6(x)\sin^6(x), we write it as: sin6(x)=(sin2(x))3\sin^6(x) = (\sin^2(x))^3

Now, substitute sin2(x)\sin^2(x) using the power-reducing formula: sin2(x)=1cos(2x)2\sin^2(x) = \frac{1 - \cos(2x)}{2}

Thus: sin6(x)=(1cos(2x)2)3\sin^6(x) = \left(\frac{1 - \cos(2x)}{2}\right)^3

Next, expand this cube: sin6(x)=(1cos(2x))38\sin^6(x) = \frac{(1 - \cos(2x))^3}{8}

Now, expand (1cos(2x))3(1 - \cos(2x))^3 using the binomial theorem: (1cos(2x))3=13cos(2x)+3cos2(2x)cos3(2x)(1 - \cos(2x))^3 = 1 - 3\cos(2x) + 3\cos^2(2x) - \cos^3(2x)

We can replace cos2(2x)\cos^2(2x) with another power-reducing formula: cos2(2x)=1+cos(4x)2\cos^2(2x) = \frac{1 + \cos(4x)}{2}

Substituting this: (1cos(2x))3=13cos(2x)+3(1+cos(4x)2)cos3(2x)(1 - \cos(2x))^3 = 1 - 3\cos(2x) + 3\left(\frac{1 + \cos(4x)}{2}\right) - \cos^3(2x)

Simplify: (1cos(2x))3=13cos(2x)+32(1+cos(4x))cos3(2x)(1 - \cos(2x))^3 = 1 - 3\cos(2x) + \frac{3}{2}(1 + \cos(4x)) - \cos^3(2x)

Finally, divide everything by 8 to fully express sin6(x)\sin^6(x): sin6(x)=18(13cos(2x)+32(1+cos(4x))cos3(2x))\sin^6(x) = \frac{1}{8} \left(1 - 3\cos(2x) + \frac{3}{2}(1 + \cos(4x)) - \cos^3(2x)\right)

This simplifies sin6(x)\sin^6(x) in terms of cosine.

Would you like to explore the full expansion in more detail, or clarify specific parts?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Power-Reducing Formulas

Formulas

\(\sin^2(x) = \frac{1 - \cos(2x)}{2}\)
\(\cos^2(2x) = \frac{1 + \cos(4x)}{2}\)

Theorems

Power-Reducing Formula

Suitable Grade Level

Grades 11-12