Math Problem Statement

use the power reducing formulas to rewrite expression in terms of firsr powers of the cosines of multiple angles. Sin^2(5x)cos^2(5x)

Solution

To rewrite the expression sin2(5x)cos2(5x)\sin^2(5x) \cos^2(5x) in terms of first powers of cosine, we'll use the power-reducing identities.

Step 1: Apply the power-reducing identity for sin2\sin^2 and cos2\cos^2

The power-reducing formulas are:

sin2(θ)=1cos(2θ)2\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} cos2(θ)=1+cos(2θ)2\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}

Step 2: Express sin2(5x)\sin^2(5x) and cos2(5x)\cos^2(5x)

We can use the identities for both sin2(5x)\sin^2(5x) and cos2(5x)\cos^2(5x):

sin2(5x)=1cos(10x)2\sin^2(5x) = \frac{1 - \cos(10x)}{2} cos2(5x)=1+cos(10x)2\cos^2(5x) = \frac{1 + \cos(10x)}{2}

Step 3: Multiply the two expressions

Now, multiply sin2(5x)\sin^2(5x) and cos2(5x)\cos^2(5x):

sin2(5x)cos2(5x)=(1cos(10x)2)(1+cos(10x)2)\sin^2(5x) \cos^2(5x) = \left( \frac{1 - \cos(10x)}{2} \right) \left( \frac{1 + \cos(10x)}{2} \right)

Step 4: Simplify using the difference of squares

Using the difference of squares formula, (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2, we get:

sin2(5x)cos2(5x)=(1)2(cos(10x))24\sin^2(5x) \cos^2(5x) = \frac{(1)^2 - (\cos(10x))^2}{4}

Simplify the expression:

sin2(5x)cos2(5x)=1cos2(10x)4\sin^2(5x) \cos^2(5x) = \frac{1 - \cos^2(10x)}{4}

Step 5: Further simplification

We can use the Pythagorean identity sin2(θ)=1cos2(θ)\sin^2(\theta) = 1 - \cos^2(\theta) to simplify this further:

sin2(5x)cos2(5x)=sin2(10x)4\sin^2(5x) \cos^2(5x) = \frac{\sin^2(10x)}{4}

So, the expression sin2(5x)cos2(5x)\sin^2(5x) \cos^2(5x) in terms of the first power of cos\cos is:

sin2(5x)cos2(5x)=sin2(10x)4\sin^2(5x) \cos^2(5x) = \frac{\sin^2(10x)}{4}

Let me know if you'd like more details or if you have any questions!


Here are 5 questions that expand on this topic:

  1. How can I rewrite expressions involving other trigonometric identities using power-reducing formulas?
  2. What are other ways to simplify trigonometric expressions involving both sine and cosine?
  3. How do the power-reducing formulas relate to the double-angle identities?
  4. What happens if we need to reduce expressions that involve higher powers of sine or cosine, like sin4(x)\sin^4(x) or cos6(x)\cos^6(x)?
  5. How do these formulas change when the angle is multiplied by a factor larger than 2, like in sin2(3x)cos2(3x)\sin^2(3x)\cos^2(3x)?

Tip: Power-reducing formulas are often used to simplify integrals involving trigonometric functions, especially when you're trying to express everything in terms of a single trigonometric function.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Power-reducing identities
Double-angle identities

Formulas

sin^2(θ) = (1 - cos(2θ))/2
cos^2(θ) = (1 + cos(2θ))/2
sin^2(θ) = 1 - cos^2(θ)

Theorems

Power-reducing identities
Pythagorean identity

Suitable Grade Level

Grades 11-12