Math Problem Statement

Use power-reducing identities sin squared x equals fraction numerator 1 minus cos open parentheses 2 x close parentheses over denominator 2 end fraction to write an equivalent expression for sin to the power of 4 x with no exponent larger than 1.

Solution

To rewrite sin4x\sin^4{x} using power-reducing identities, we start by applying the identity for sin2x\sin^2{x}:

sin2x=1cos(2x)2\sin^2{x} = \frac{1 - \cos(2x)}{2}

Now, express sin4x\sin^4{x} as:

sin4x=(sin2x)2\sin^4{x} = (\sin^2{x})^2

Substitute the identity for sin2x\sin^2{x}:

sin4x=(1cos(2x)2)2\sin^4{x} = \left(\frac{1 - \cos(2x)}{2}\right)^2

Expand the square:

sin4x=(1cos(2x))24\sin^4{x} = \frac{(1 - \cos(2x))^2}{4}

Now, expand (1cos(2x))2(1 - \cos(2x))^2:

(1cos(2x))2=12cos(2x)+cos2(2x)(1 - \cos(2x))^2 = 1 - 2\cos(2x) + \cos^2(2x)

Thus:

sin4x=12cos(2x)+cos2(2x)4\sin^4{x} = \frac{1 - 2\cos(2x) + \cos^2(2x)}{4}

Next, apply the power-reducing identity again to the cos2(2x)\cos^2(2x) term:

cos2(2x)=1+cos(4x)2\cos^2(2x) = \frac{1 + \cos(4x)}{2}

Substitute this into the expression:

sin4x=12cos(2x)+1+cos(4x)24\sin^4{x} = \frac{1 - 2\cos(2x) + \frac{1 + \cos(4x)}{2}}{4}

Simplify the expression:

sin4x=12cos(2x)+12+cos(4x)24\sin^4{x} = \frac{1 - 2\cos(2x) + \frac{1}{2} + \frac{\cos(4x)}{2}}{4}

Combine the constant terms:

sin4x=322cos(2x)+cos(4x)24\sin^4{x} = \frac{\frac{3}{2} - 2\cos(2x) + \frac{\cos(4x)}{2}}{4}

Finally, distribute the 14\frac{1}{4}:

sin4x=38cos(2x)2+cos(4x)8\sin^4{x} = \frac{3}{8} - \frac{\cos(2x)}{2} + \frac{\cos(4x)}{8}

Thus, the equivalent expression for sin4x\sin^4{x} is:

sin4x=38cos(2x)2+cos(4x)8\sin^4{x} = \frac{3}{8} - \frac{\cos(2x)}{2} + \frac{\cos(4x)}{8}

Would you like a detailed breakdown of any of the steps?

Here are 5 related questions to explore this further:

  1. How can power-reducing identities be used to simplify cos4x\cos^4{x}?
  2. What are other applications of power-reducing identities in trigonometry?
  3. Can you derive the identity for cos2x\cos^2{x} using similar methods?
  4. How do power-reducing identities relate to double-angle identities?
  5. How would you integrate sin4x\sin^4{x} using this expanded form?

Tip: Power-reducing identities are particularly useful for reducing higher powers of trigonometric functions when solving integrals or simplifying expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Power-Reducing Identities
Double-Angle Identities

Formulas

sin^2(x) = (1 - cos(2x)) / 2
cos^2(x) = (1 + cos(2x)) / 2

Theorems

Power-Reducing Identity
Double-Angle Identity

Suitable Grade Level

Grades 10-12