Math Problem Statement
A satellite orbits the sun with a period of 2.00 days. What is the radius of its orbit? Express your answer with the appropriate units.
Solution
To solve for the radius of the satellite's orbit around the Sun, we can use Kepler's Third Law of Planetary Motion, which relates the orbital period of a satellite to the radius of its orbit around the Sun. Kepler's Third Law is given by:
Where:
- is the orbital period of the satellite (in seconds),
- is the gravitational constant (),
- is the mass of the Sun (),
- is the radius of the orbit (which we want to find).
We can rearrange the equation to solve for :
Step 1: Convert the orbital period to seconds.
Given that the period is 2.00 days, we need to convert this to seconds:
Step 2: Substitute known values into the equation.
Now, substitute , , and into the rearranged Kepler's Third Law:
Step 3: Calculate the value of .
Let's compute this value.The radius of the satellite's orbit around the Sun is approximately meters, or 4.65 million kilometers.
Would you like more details or have any questions?
Here are 5 related questions to expand on this concept:
- How would the radius change if the satellite's period was 5 days instead of 2 days?
- How is Kepler's Third Law applied to objects orbiting planets like Earth?
- How does the mass of the central object (the Sun in this case) affect the orbit of a satellite?
- What assumptions are made in Kepler’s Laws about the shapes of orbits?
- How does the gravitational force between two objects depend on their distance?
Tip: The orbital period and the radius of an orbit are strongly related. Increasing the orbital period significantly increases the orbital radius due to the cubic relationship in Kepler's Third Law.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Orbital Mechanics
Kepler's Third Law
Exponential and Cubic Relationships
Formulas
T^2 = (4π^2 / GM) * r^3
r^3 = (GMT^2) / (4π^2)
Theorems
Kepler's Third Law
Suitable Grade Level
Grades 11-12, College Level Physics
Related Recommendation
Calculate the Orbital Radius of a Satellite Using Kepler's Third Law
Calculate the Radius of a Satellite's Orbit with a 2-Day Period Using Kepler's Law
Calculate the Orbital Radius of an Earth Satellite Using Kepler's 3rd Law
Kepler’s Third Law: Calculating the Mass of a Central Object Using Orbital Period and Semi-Major Axis
Calculate the Semi-Major Axis of a Planet's Orbit using Kepler's Third Law